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Chapter 1

Product Vision

The goal of the project group iTraffic with TurtleBots is to develop autonomous
driving functions with TurtleBots to solve scenarios of varying complexity based
on a German Autobahn. To assure that these driving functions meet their
specifications, test-based validation will be used.

The project group will use the TurtleBot platform as a basis. This makes
it possible to experimentally validate autonomous driving functions in different
simulated traffic scenarios with the use of mostly low-cost sensor technology.
The goal is to present and tackle the challenges of autonomous driving in a way
that is cost-effective and low-risk.

In order to achieve this, a platform for creating autonomous driving func-
tions based on the TurtleBot will be developed. It will enable members of the
project group as well as future developers to implement controllers for vehicles
on different autonomy levels and simulating those vehicles on a TurtleBot. This
platform is called TurtleCar.

Additionally, TurtleCar will provide capabilities to validate the controllers
in a simulated as well as a real life environment. For this, a Domain Spe-
cific Language (DSL) to define test cases for the controllers will be developed.
The simulation suite

”
Gazebo“ will be used for testing in a simulated environ-

ment. Using the simulation, it will be possible to automatically execute test
cases, gather the results and determine whether the test conditions where met.
TurtleCar will ensure that both environments behave similarly with regard to
the inputs and outputs of the controller.

Using the TurtleCar platform, several scenarios of various complexities will
be developed and provided for the creation of test cases for the testbed. This
will enable a developing cycle that is closely related to the DevOps method: The
development of the testbed follows the requirements posed by the scenarios, and
can be adjusted as needed.

1.1 Autonomous Driving Functions

The scenarios developed as part of this project group will all be based on a
highway with the properties of a German Autobahn. Controllers with three
different levels of autonomy will be built:

• no autonomy
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• partially automated

• highly automated

The functions will be implemented using suitable, robust control strategies.
They will be based on the current state of the art in the control engineering
domain.

1.2 Functions of the Non-Autonomous Vehicle

The non-autonomous vehicle has no assistance systems. In the non-autonomous
vehicle, a human driver controls the vehicle completely. They can define the
speed and the steering angle, and the bot moves according to the vehicle’s
dynamics.

Functions of the Partially Automated Vehicle The partially automated
vehicle can perform certain functions autonomously within bounded conditions.
It may call for the driver’s intervention if needed.

Lane Keeping Assistant The driver will determine the speed of the ve-
hicle. As long as the Lane Keeping Assistant is activated, the vehicle will keep
to the center of its current lane without the need of the driver to control the
steering angle.

Adaptive Cruise Control The speed of the vehicle will be partially de-
termined by the driver. When Adaptive Cruise Control is activated, and an-
other, slower vehicle is driving in the front, the speed will be adjusted so that a
safety margin will be kept.

Lane Changing When the Lane Changing function is engaged, if condi-
tions permit, the vehicle will execute lane changes, while maintaining appropri-
ate spacing from neighboring vehicles.

Collision Avoidance System The vehicle will avoid static obstacles like
road works by changing lanes or stopping safely before the obstacle until a safe
lane changing is possible.

Overtaking The vehicle will avoid obstacles moving in the same lane,
like a slower car ahead, by changing lanes or reducing speed until a safe lane
changing is possible.

Functions of the Highly Automated Vehicle The highly automated vehi-
cle is able to drive on the highway without needing intervention from the driver.
All actions will be self-initiated. Using only the aforementioned driving func-
tions, it will move the vehicle forward as safely as possible without any input
from the driver while adhering to the German traffic regulations in terms of
safety margins. Also, it will adhere to speed limits and

”
no overtaking“ road

signs.
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Malicious Agent Avoidance The vehicle will avoid collisions with cars
which are moving in defiance of traffic rules by choosing a safe driving strategy.‘

Platooning In platooning mode, the vehicle will join a closely coordinated
group of vehicles traveling in a convoy-like formation. The system will auto-
matically control the vehicle’s speed, following distance, and positioning within
the platoon. The platooning system will continuously communicate with other
vehicles in the group, ensuring safe and efficient travel.

3
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Chapter 2

State of the Art

This section introduces the autonomy levels according to the Society of Automo-
tive Engineers (SAE), shows the group’s ongoing research on driving functions,
and outlines past projects working on similar topics.

2.1 Levels of Automotive Autonomy

The SAE defines levels of autonomy in on-road automated driving vehicles. The
SAE standard J3016 202104 [47] outlines the six levels of driving automation,
ranging from Level 0 (no automation) to Level 5 (full automation) depicted
in Table 2.1 as follows.

Table 2.1: Levels of driving automation according to the SAE standard
J3016 202104 [47]

Level Description
Level 0 No Driving Automation
Level 1 Driver Assistance
Level 2 Partial Driving Automation
Level 3 Conditional Driving Automation
Level 4 High Driving Automation
Level 5 Full Driving Automation

While level 1–2 use
”
driver support“ features, level 3–5 use

”
automated

driving“ features. The level of driving automation of a vehicle is determined by
a combination of factors: the extent of required human involvement in driving
tasks, the vehicle’s capability to perform driving functions, and the operational
design domain under which a feature is designed to function (i. e. environmental
restrictions). The standard also differentiates between three types of actors: the
(human) user, the driving automation system, and other vehicle systems and
components.

Because of this, systems that provide alerts about driving hazards are ex-
cluded from this classification as they neither automate driving tasks nor change
the driver’s role in performing them. Additionally, the lane keeping assistant,
the electronic stability control or other certain types of driver assistance sys-
tems are not covered by this driving automation classification. This is because
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it provides momentary intervention rather than sustained automation of driving
tasks.

2.2 Assisted Driving Functions

The following contains the initial research done before implementing the driving
functionalities.

2.2.1 Lane Departure Warning System [30]

The Lane Departure Warning System is a feature designed to alert the driver
when their vehicle unintentionally drifts from its lane without using a turn
signal. There are different types of such a system:

• Lane departure warning (LDW)

• Lane keeping assist (LKA)

• Lane centering assist (LCA)

• Automated lane keeping systems (ALKS).

While the LDW only warns the driver, the LKA ensures that the vehicle
stays in its lane. Furthermore, the LKA makes sure that the car stays centered
in its lane. The ALKS is a combination of LKA and ACC.

There are several vehicles in which a LDWS is integrated dating back to 2001.
Generally, they are based on video sensors mounted behind the windshield, laser
sensors and infrared sensors.

The LDW observes the TurtleBot’s movements and its position within the
lane. It can recognize the TurtleBot leaving its lane without using a turn signal
and gives an alert. The LDW can be implemented with the LIDAR Sensor by
orienting the lanes along a wall and / or with the camera

When the lanes can be perceived, the TurtleBot leaving its lane or starting
to leave its lane has to be recognized. This can be achieved by observing the
displacement of the TurtleBot in its lane. To later control the TurtleBot to stay
in its lane, the direction in which the TurtleBot deflects should be identified as
well.

2.3 Related Projects

In the past, there were several projects from the Carl von Ossietzky University
of Oldenburg who dealt with implementing driving functions on hardware rep-
resenting a vehicle. In the following, these will be described and distinguished
from the project group.

”
Realtime Controlled Cooperative Autonomous Racing System“ (RCCARS)

has undertaken the task to develop a safety-critical system using the racetrack
Mini-Z Grand Prix Circuit 30 and RC-Cars from Kyosho. This system is re-
sponsible for observing and controlling autonomously operating vehicles on a
racetrack. In their

”
collision-free“ scenario, a single car is supposed to au-

tonomously complete five laps on the racetrack at a minimum average speed of
1.5 m/s without colliding with the track’s boundaries. [9]
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”
Realtime Controlled Cooperative Autonomous Racing System Next Gener-

ation“ (RCCARSng) builds upon the work of RCCARS. It extends the project
by adding a second car and several static obstacles. Both cars are supposed
to complete a minimum of ten collision-free laps. During this, both vehicles
have the opportunity to overtake each other and should avoid obstacles while
doing so. This group divides their scenario

”
collision-free overtaking“ in three

variants:

• One vehicle following the other.

• One vehicle overtaking the other.

• Following and overtaking while avoiding obstacles. [7]

RCCARS and RCCARSng both use global knowledge and external calcu-
lations. A camera situated above the racetrack perceives the track and the
vehicles on the track. There exists an external component responsible for loca-
tion determination and for controlling the vehicles. For the overtaking function,
they use a preceding trajectory calculation implemented in Matlab.

”
Emergency Braking Assistant for fully Autonomous Cars“ (EmBrAAC) has

undertaken the task to develop a real-time vehicle assistant. Depending on the
situation, it should be capable of calculating an evasive strategy or performing
emergency braking. They use a remotely-controlled vehicle from Traxxas in
combination with a predefined and self-build course. Their focus lies on real-
time capabilities and contract-based design. [17]

Within the context of the university course
”
Forschendes Lernen - Mobiles

Multiagenten-Robotersystem“ eight students investigated and practically im-
plemented method-oriented topics in the field of mobile robotic systems using a
TurtleBot. They familiarized themselves with the simulation software Gazebo
and used it to validate initial prototypes before transferring them into real
hardware. After doing some fundamental work with the TurtleBot and Gazebo
software, the students were split into two groups.

One group focused on using Simulink to address the question
”
How can an

autonomous driving function for obstacle avoidance be developed?“. As part
of this, they developed control algorithms that enable the robot to follow the
desired path, navigate around obstacles, and perform precise navigation.

The other group, using Python, explored the question
”
How is realistic driv-

ing behavior simulated?“. In doing so, they researched vehicle models and
implemented a suitable one. This included considering factors such as friction,
inertia, road conditions, and other physical properties.

During the course, Simulink and Python were compared for the implemen-
tation of driving functions on a TurtleBot. The course was meant as a pre-
liminary project for the

”
iTraffic with TurtleBots“ project group. The project

group adopted the vehicle model and knowledge about the differences between
reality and Gazebo simulation.

The project group
”
iTraffic with TurtleBots“ enables the utilization and

implementation of driving functions on a TurtleBot based on local knowledge.
The implemented functions use a camera und a LIDAR sensor on the TurtleBot.
These sensors can be combined freely. The environment in which the TurtleBot
operates and the TurtleBot itself closely resembles reality: The TurtleBot is
located on a three-lane highway and behaves like a specific car. The goal is to
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develop a modular development platform. That means vehicle models, environ-
ments and driving functions can be added and are interchangeable. Alongside
the creation of the development platform, an automated testing platform is
created. This allows experimentally validating the driving functions.
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Chapter 3

Reflecting Reality

The driving functions to be developed and the used environment should be re-
alistic to allow accurate emulation of vehicles. To develop a testing framework
based on the German highway, a representative environment needs to be cre-
ated. This environment has to be defined in a way that makes it usable in
reality and in a Gazebo simulation. The definition is done by scaling down the
real environment to TurtleBot dimensions, which is described in detail in this
section. Furthermore, the safety measures employed should follow those used
on a German highway.

3.1 Terminology

Before discussing the topic of scaling down the real highway model to an envi-
ronment that is usable by the TurtleBot, some terminology is defined.

Environment The actual scaled down environment used by TurtleCar in re-
ality, or in Gazebo. When prefixed with ‘real’, specifically the real en-
vironment made of paper and cardboard is referenced. Respectively, the
‘simulated environment’ targets the Gazebo environment.

Road Model The actual, real road parameters that are the origin of the scaled
down environment, i.e. the German highway.

Scaling Factor The factor by which a road model distance unit is scaled down
to the environment distance. i. e. , if the real road specifies a width of 2m,
and the scaling factor is 0.25, the distance would be 0.5m in the scaled
environment.

3.2 Technical Parameters of Subjects Involved
in the Environment

In this section, the technical parameters used to create the scaled down envi-
ronment are described. These parameters are referenced in later sections, where
their values are used to construct the scaled down environment. The involved
subjects are the TurtleBot 3 Burger model, a Golf VIII car model, and a stan-
dard German autobahn.
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3.2.1 TurtleBot 3 Burger Model

To emulate a car on the TurtleBot the technical details of the TurtleBot model
are needed. Even though a TurtleBot 3 Specifications Guide exists, the techni-
cal parameters were determined empirically, to make the comparison between
reality and specifications possible. The experimental data is depicted in Ta-
ble 3.1. The data from the specifications is depicted in Table 3.2. Please note
that this information does not apply when using the TurtleBot in the Gazebo
environment.

The value column corresponds with the value which is provided through the
/cmd vel topic. Anything below or above the Min/Max values will be ignored
by the TurtleBot. Position/Speed accuracy for the odometer was not collected
because the /odom topic already returns a covariance matrix which corresponds
with the accuracy of the measurement.

Table 3.1: Experimentally determined TurtleBot 3 Burger parameters

Parameter Value Notes

Min. Velocity (inclusive) 0.01
Max. Velocity (exclusive) 0.22
Min. Velocity Increment 0.01
Min. Turn Velocity (inclusive) 0.01 Very irregular speed, almost a

stutter
Min. Turn Velocity (reliable) 0.1
Max. Turn Velocity (exclusive) 2.64
Min. Turn Velocity Increment 0.01 Not 100% certain

The specification defines the following technical parameters for the TurtleBot
3 Burger model (see [41]):

Table 3.2: TurtleBot 3 parameters from specification

Parameter Value

Max. Velocity 0.22m/s
Max. Turn Velocity 2.84 rad/s (162.72 deg/s)
Size (Length, Width, Height) 138mm, 178mm, 192mm

The minimal speed increment of 0.01 m/s poses a problem for the velocity
calculations inside the Transposer component of TurtleCar Core. The problem
is that the transposer is calculating a new TurtleBot velocity every time step to
simulate a correct acceleration. If the calculated velocity for a given time step
is smaller than 0.01 m/s then the TurtleBot doesn’t change its velocity for the
current time step. The current velocity vk is used to calculate the velocity for
the next time step vk+1 using the formula:

vk+1 = vk + ak ∗ T

Where ak is the current acceleration and T is the length of the time step.
For a constant ak and T , this would conclude that the TurtleBot would not in-
crease in speed. To counteract this issue, the transposer is saving the remaining
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velocity part vr which is not handled by the TurtleBot until the next time step
and adds this part to the velocity calculation.

vk+1 = vk + vr + ak ∗ T

This ensures that after enough time steps the TurtleBot will reach a velcoity
greater than 0.01 m/s.

3.2.2 Golf VIII

When scaling the actual environment down to the representative model, the x-
axis is adjusted using a scaling factor derived from the size comparison between
the TurtleBot and a real VW Golf VIII. This car model has the specifications
as depicted in table Table 3.3 (see [1]):

Table 3.3: Golf VIII parameters

Parameter Value

Max. Velocity 69,44m/s, 250 km/h respectively
Size (Length, Width, Height) 4287mm, 1789mm, 1478mm

3.2.3 Road Model

The used road model is based on a standard German highway. In general, the
measurements given in the table Table 3.4 are used (see [46]):

Table 3.4: German highway dimensions

Parameter Value

Lane Width 2.75m - 3.75m
Dash Mark Width normal 15 cm, broader 30 cm
Dash Mark Length 6m
Dash Mark Spacing 12m

3.3 Strategy for Creating the Scaled Environ-
ment

A specific scaling strategy is used to adapt the environment, which is based on
two factors - one for the x-axis, one for the y-axis. The following explains the
strategy of how the scaling factors are calculated (see section 3.4 for the actual
calculations).

The first factor is based on the ratio of the width of a Golf VIII to that
of a TurtleBot. For more information on why the Golf VIII has been chosen
as the reference point, see section 3.6. The width of a Golf VIII, which is
approximately 2.073m, is set in relation to the width of the TurtleBot, which is
0.178m (see section 3.2). This results in a ratio that is used as the scaling factor
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from road model to environment when displayed as a floating point number.
This factor is used to scale the x-axis of the environment. see Table 3.5 for the
factor value.

Table 3.5: X-axis scale factor

Parameter Value Unit

Width TB 0,178 m
Width Golf VIII (incl. Mirror) 2,073 m
Width Scale (X-Axis) 0,086

The second factor is based on the ratio of the Golf’s maximum speed and
the TurtleBot’s maximum speed. For this, it’s pretended that the real car can
drive with a maximum speed of 100 km/h. Using the real maximum speed of
the Golf VIII model would result in an impractical environment y-axis scaling.
For example, the scaling would be so small, that every millimeter traveled in
the environment would equal 0.333m traveled in the real environment, mak-
ing the driving functions hard to comprehend. Therefore, a custom maximum
speed was established as the factor used to scale the y-axis of the environment.
see Table 3.6 for the factor value.

Table 3.6: Y-axis scale factor

Parameter Value Unit

Pretend Speed 100,000 km/h
Pretend Speed 27,778 m/s
Real TB Speed 0,200 m/s
Speed Scale (Y-Axis) 0,007

In order to use the same factor on Speed and Length, the regular TB length
is scaled down. see Table 3.7 for the calculation.

Table 3.7: Scaling the TurtleBot length

Parameter Value Unit

Actual Length TB 0,138 m
Length Golf 4,284 m
Length Scale (same as Speed) 0,007
Presumed Length TB 0,031 m

The summary of this approach, i.e. the scaling strategy, will be called Width-
Speed-Scaling in following sections.

3.4 Scaling Down the Road Model

The table Table 3.8 shows the specifications of both the scaled and the original
environment, with the respective scale factors used for the parameters. Based
on the given values, the lane width of a German highway is 3.750m in reality,
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Table 3.8: Scaled environment parameters

Actual Axis Scale Factor Scaled

Lane Width 3,750 X-Axis 0,086 0,322 m
Car Width 2,073 X-Axis 0,086 0,178 m
Roadway Width 11,250 X-Axis 0,086 0,966 m
Dashes Width 0,300 X-Axis 0,086 0,026 m

Speed 27,778 Y-Axis 0,007 0,200 m/s
Roadway Length 694,000 Y-Axis 0,007 4,997 m
Dashes Length 6,000 Y-Axis 0,007 0,043 m
Dashes Gap 12,000 Y-Axis 0,007 0,086 m
Car Length 4,284 Y-Axis 0,007 0,031 m

whereas it is 0.32m in the scaled down environment, making the environment
constructible.

3.5 Resulting Environment

In order to represent a real car in a smaller environment, the real models and
Gazebo models of a three-lane highway use the dimensions depicted in fig-
ures Figure 3.1, which are based on the scaled environment parameters from
table Table 3.8.

The resulting width of the scaled environment also fits a TurtleBot 3 Waffle
model, since that model has a width of 30.6 cm. That means, the project group
is not limited to using TurtleBot 3 Burger models only. E.g., Waffles could be
used as trucks in the environment.

3.5.1 Graphical Representation of the Resulting Environ-
ment

Figure Figure 3.1 displays a graphical representation of the scaled environment
using the calculated values from table Table 3.8

3.5.2 Applying the Results to the Environment Used in
Reality and Simulation

The environments are depicted as in Figure 3.2 and Figure 3.3.
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Figure 3.1: Specifications of the straight highway environment

Figure 3.2: Road in reality

Figure 3.3: Road in the simulated
environment (Gazebo)
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3.6 Disadvantages and other Approaches

There are disadvantages to the chosen approach. Six other scaling strategies
were contemplated, but ultimately it has been settled to use the described
Width-Speed-Scaling approach, because the disadvantages of it seemed man-
ageable - more so than those of the other strategies.

An example alternative approach would be using a length based ratio instead
of the speed based ratio for the y-Axis. That approach would have resulted in
three different scaling factors:

• Length: 0.032

• Width: 0.087

• Speed: 0.007

To mitigate this, Length and Speed could be brought together to one scaling
factor (0.007) by changing the pretended maximum speed. However, the result-
ing pretended speed in the simulated environment would then equal 22.35 kmh
at maximum. That means, it would have to be pretended that the Golf VIII
can only reach that speed, which would be unfeasible for implementing driving
functions based on reality.

The selected Width-Speed-Scaling strategy has its limitations and results in
inconsistencies when applied to vehicle models that deviate from the dimensions
of the Golf VIII, such as the Jaguar. Comparing such different sized vehicles to
the TurtleBot’s dimensions leads to discrepancies in the resulting scaling ratios.
However, the Golf VIII is a good reference point for modeling the environment,
since it is one of the most popular cars in Germany (see [27]). The error resulting
from using other vehicle models in an environment that is scaled to the dimen-
sions of the TurtleBot is expected to be neglectable. This is supported by the
fact that only the y-axis scaling factor is derived from the ratio of the TurtleBot
to a standard car model. That means, swapping in another vehicle configuration
would only affect the scaled y-axis parameters. However, it’s worth noting that,
in the real world, vehicles of various sizes are commonly used, even though the
typical German highway may be designed with a standard vehicle size in mind.
This issue is not addressed further in the ongoing work of this project group.

The Width-Speed-Scaling additionally results in a very short TurtleBot 3 cm,
which is shorter than in reality (13.8 cm). However, this allows the usage of only
two scaling factors for the three dimensions: x-axis, y-axis, and speed, making
further calculations easier. Using only two scaling factors is the main benefit of
the Speed-Width-Scaling approach.

Since it is not possible to shorten the TurtleBot’s dimensions to the resulting
3 cm in reality, this limitation is addressed by using the TurtleBot’s actual length
in critical components such as the Advanced Cruise Control. Furthermore, e.g.
the vehicle model currently uses the scaled length of 3 cm, to make various
calculations, such as the air resistance.

In summary, each analyzed scaling strategy presented its own set of disadvan-
tages. The Width-Speed-Scaling strategy was chosen because its disadvantages
were deemed to be the most manageable.
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3.7 Differences between Gazebo and Reality

Various aspects of the Gazebo simulation lead to inevitable differences between
it and the actual real-world setup. The following differences between the two
have been identified:

• Gazebo has a continuous guardrail. In the real environment, this is ap-
proximated with smaller straight segments, which can lead to inaccuracies
especially in curves. If the segments are placed too far apart, it can happen
that a hole in the wall is detected, resulting in calculating wrong lanes.

• The small stands for the guardrail segments in the real environment cur-
rently reach into the lanes. This provides a potential hazard to the Turtle-
Bot at the moment.

• The obstacle in Gazebo is 33 cm x 100 cm while in the real environment it
is 32 cm x 44 cm. This means that the real environment obstacle doesn’t
completely fill a lane.

• The positions of lanes and lane markings in Gazebo are according to the
measurements in Figure 3.1. In the real environment, they might be dif-
ferent depending on how precisely they are set up. The ground segments
in real life are not perfectly flat, resulting in small inaccuracies in the lane
widths.

3.8 Terms of Safety

The terms of safety for the TurtleBot follow those of the StVO.

3.8.1 Front Back Clearance

The distance to the vehicle in front or behind is not precisely defined by law.
According to §4 Abs. 1 StVO,

”
The distance to a vehicle driving in front must

generally be so large that it can be maintained behind it even if it suddenly
brakes.“

However, there are some general rules of thumb for orientation: One rule sug-
gests that the distance should be at least half the value shown on the speedome-
ter, which is based on §2 Abs. 3a StVO. The second rule suggests that within
urban areas, the distance should be 1 second, which at a speed of 50 km/h is ap-
proximately 15 meters. Outside urban areas, the distance should be 2 seconds,
which at a speed of 100 km/h is approximately 50 meters.

3.8.2 Lateral Clearance

Regarding the lateral distance during overtaking, the legal guidelines are vague.
According to §5 Abs. 4 StVO,

”
When overtaking, a sufficient lateral distance

to other road users must be maintained.“ For overtaking
”
pedestrians, cyclists,

and operators of small electric vehicles“ with motor vehicles, the guidelines are
more specific: As per §5 Abs. 4 StVO, the sufficient lateral distance within
urban areas must be at least 1.5 meters, and outside urban areas, it must be at
least 2 meters.
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3.8.3 Guidelines for the TurtleBot

In Table 3.9 are the clearance guidelines for the TurtleBot defined, which con-
sider the regulations of the StVO. These are not complete (yet) and only are
considering the scenarios which will be implemented.

Table 3.9: Clearances

Direction Clearance Notes

Longitudinal <speed [km/h]>
2 [m] Rule of thumb:

”
half

speedometer“ (§2 Abs. 3a
StVO)

Lateral (overtaking car) 1 [m] No concrete source could be
found. There is a consensus
among the internet on the
value of 1 meter.

Lateral (overtaking bicycle,
in town)

1.5 [m] §5 Abs. 4 StVO

Lateral (overtaking bicycle,
out of town)

2 [m] §5 Abs. 4 StVO
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Chapter 4

Vehicle Emulation

In order to be able to develop controllers for real cars and test them on the
TurtleBot, the behavior of a real vehicle needs to be emulated on the bot. This
section describes the vehicle model used for emulation, its dynamics and its con-
trol inputs. First, an idealized vehicle model is defined, which is an abstraction
of the actual emulation that can be used for controller development. Afterward,
the differences between the idealized model and the actual implementation are
discussed.

4.1 Idealized Vehicle Model

The vehicle emulation is based on the kinematic bicycle model. The bicycle
model is a simplified representation of a car’s dynamics that can be used in the
field of vehicle dynamics and autonomous driving for motion planning and is
often used for model-predictive control [38]. It is called the

”
bicycle model“

as it consolidates the dynamics of a car into a two-wheeled model, where the
two front wheels and the two rear wheels are each represented as a single wheel.
The model can be defined from different points of view along the vehicle. For
this project group, a model with a viewpoint from the center of the rear axle
was chosen for reasons of simplicity. For controlling the lateral movement, the
bicycle model uses steering angle as input. The model used here is based on the
bicycle model definition given in [38]. It contains the following variables:

• X and Y : The longitudinal and lateral positions of the vehicle, respectively

• θ: The heading angle of the vehicle

• v: The speed of the vehicle

• a: The acceleration of the vehicle

• α: The steering angle

• l: The wheelbase length, which is the distance between the front and rear
axles

• r1: Tire friction value

19



• r2: Air resistance value

• d1: Linear approximation of the disturbance on the acceleration due to
motor friction and transmission

l, α, r1 and r2 are all parts of the vehicle configuration. For model sim-
plicity, the acceleration in this model is only affected by friction forces. Motor
resistance is only considered as a linear disturbance parameter d1 acting on the
acceleration input in this idealized model. These errors were chosen to only
affect acceleration, not steering.

The control inputs to the model are defined as follows:

u1 = a

u2 = α

The dynamics are defined as follows:

ẋ1 = Ẋ = x3 · cos(x4)
ẋ2 = Ẏ = x3 · sin(x4)
ẋ3 = v̇ = r1 · x3 + r2 · x23 + d1 · u1

ẋ4 = θ̇ =
v

l
· tan(u2)

In the beginning of the project group, a simplified model with three instead
of four states had been used. The velocity had been modeled as a control input
and the implementation was based on using always the maximum acceleration
and deceleration to achieve that velocity as quickly as possible. Because this
only allowed for very sharp and inconvenient driving maneuvers, the model was
reworked to use the acceleration as an input, as it gives the controllers more
freedom and represents more closely the input of a real car.

4.2 Emulated Vehicle Model

The emulation extends the idealized model described in section 4.1 in order to
make it more realistic. In addition to friction and wind resistance, it contains an
approximation of a car’s transmission and gear shift, which affects the actual ac-
celeration of the car. This is not part of the idealized model. Controllers need to
be designed in a way to be robust against these errors and model discrepancies.

In order to provide these realistic disturbances, a motor and friction model is
used to calculate the highest acceleration of the vehicle possible given the current
gear, vehicle weight, velocity and other relevant variables. If the acceleration
given by the controller is higher, the highest possible acceleration of the vehicle
is used instead. Conversely, if the vehicle is braking (the controller is giving a
negative acceleration), the maximum possible deceleration is calculated and the
minimum is used.

The model and its implementation are described in the following.
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4.2.1 Motor Model

The motor model is implemented through a series of calculations and functions
which account for various factors including the engine’s revolutions per minute
(RPM), torque and gear ratios. The motor model takes into account car-specific
factors which can be configured to emulate different types of cars.

The following calculations are based on the formulas given in [45].

Engine RPM Calculation: The engine’s RPM is computed based on the
vehicle’s current speed, the wheel circumference, and the current gear and final
drive ratios.

1. Convert the speed from meters per second (speed m s) to meters per
minute by multiplying with 60:

speed m min = speed m s · 60

2. Calculate the wheel revolutions per minute (RPM) by dividing the speed in
meters per minute by the wheel circumference (wheel circumference m):

wheel rpm =
speed m min

wheel circumference m

3. Finally, calculate the engine RPM by multiplying the wheel RPM with
the current gear ratio (current gear ratio) and the final drive ratio
(final drive ratio):

engine rpm = wheel rpm · current gear ratio · final drive ratio

Torque Calculation: The current torque is calculated based on the engine’s
RPM. A linear interpolation function, interp1d, is employed to interpolate the
torque values from a predefined set of engine speed and torque points.

Gear Shift Handling: The motor model checks whether a gear shift is avail-
able or necessary based on the current RPM and the specified RPM ranges for
each gear. If a gear shift is required, the current gear is updated, and the time
of the last gear switch is recorded.

Engine Acceleration Force Calculation: The engine acceleration force is
the total force provided by the engine and is calculated using the current torque,
gear ratio, final drive ratio, and the wheel radius. This calculation accounts for
transmission losses.

1. Compute the engine torque after transmission by multiplying the average
engine torque (avg engine torque nm) with the gear ratio (gear ratio)
and the final drive ratio (final drive ratio):

engine torque after transmission = avg engine torque nm

· gear ratio · final drive ratio
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2. Compute the engine torque after accounting for engine losses by multi-
plying the engine torque after transmission with the engine loss factor
(engine loss):

engine torque after losses = engine torque after transmission · engine loss

3. Finally, calculate the engine acceleration force by dividing the engine
torque after losses by the wheel radius (wheel radius m):

engine acceleration force =
engine torque after losses

wheel radius m

The TurtleBot’s linear and angular velocities can be controlled to emulate
the motion of a vehicle as described by the Bicycle Model. The model’s state
variables are mapped to TurtleBot controls as follows:

• The longitudinal velocity v of the model corresponds to the linear velocity
of the TurtleBot.

• The heading θ of the model is used to control the angular velocity of the
TurtleBot

4.2.2 Steering Angle Limiting

To ensure that the simulated vehicle behaves realistically at high speeds, its
steering angle needs to be constrained depending on its driven speed. The
steering angle directly affects the turn rate of the vehicle; a high steering angle
combined with high speed results in high lateral acceleration and consequently
could lead to a loss of control over the vehicle. To avoid this and ensure that the
vehicle’s behavior is predictable, the allowed lateral acceleration of the vehicle
needs to be restricted in the emulation model.

The authors of [8] present a formula for the accepted lateral acceleration as
a function of vehicle speed. The formula uses a criterion taken from [31] using
data from a driving behavior study to model the acceptable lateral acceleration
for an average and a 85th percentile driver. The term

”
85th percentile driver“

here refers to someone driving more dynamically than 85% of the population.
This solution is suitable for setting a velocity-based limit on the steering angle in
the used vehicle model, as it is slip free and relatively simple. For more complex
vehicle models, additional factors such as tire dynamics and road conditions
could be considered in order to limit the steering angle in a way that ensures
safety. This alternative approach would be independent of the drivers comfort
and instead based on vehicle configuration and road conditions.

The calculation of the maximum acceptable steering angle in the model is as
follows:

1. Radius: The turning radius R of the vehicle given a steering angle δ and
the vehicle’s wheelbase L is calculated as

R =
L

tan(δ)

The turning radius is inversely proportional to the tangent of the steering
angle, which follows from the Bicycle Model.
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2. Current Lateral Acceleration: Given the vehicle’s velocity v and turn-
ing radius R, the lateral acceleration alat experienced by the vehicle can
be calculated using the centripetal acceleration formula:

alat =
v2

R

3. Accepted Lateral Acceleration: The accepted lateral acceleration for
a given velocity is calculated using the criterion K from [31]. For an
average driver, the K criterions has been estimated to be 36.0 and for the
85th percentile driver 42.0. The formula from [31] is as follows:

alat accepted =

(
K

v

)2

If the lateral acceleration for a given speed remains below this value, that
means the vehicle’s behavior is within safe limits.

4. Steering Angle: If the current lateral acceleration exceeds the accepted
value, the steering angle δ must be reduced. This is done by first calculat-
ing the maximum allowed turning radius Rmax using the accepted lateral
acceleration (formula derived from step 2):

Rmax =
v2

alat accepted

Subsequently, the required steering angle to achieve this turning radius is
found using:

δmax = arctan

(
L

Rmax

)
which gives the maximum permissible steering angle.

Additionally, the model incorporates a static maximum lateral acceleration value
of 5m/s

2
. This limit was derived based on the graph in Figure 4.1 and was

imposed to improve the low speed behavior of the simulated TurtleBot.

4.3 Vehicle Configuration

Vehicle configuration files, which contain all parameters necessary to simulate a
realistic vehicle, are used. These can be switched out depending on the simulated
scenario. Each configuration file is written in the YAML language and contains
the parameters for a specific vehicle model. Furthermore, the configuration
of each vehicle includes models for single vehicle parts such as the Motor or
the Transmission. This modularity enables constructing configurations using
various vehicle part models that have already been defined. Currently two
different configurations are used, one for simulating a sports car (Jaguar F-
Type) and one for a more casual car (VW Golf VII). The modules describing
vehicle parameters are divided into five categories.
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Figure 4.1: Lateral acceleration in relation to speed for study data, taken
from [8]. The green curve is the limit calculated using Levinson’s criterion
for an average driver [31].

4.4 Engine

The engine is a component that is used by all vehicles and usually varies from
vehicle to vehicle, therefore, its parameters need to be specified separately. Per-
formance diagrams might need to be evaluated to acquire some of the engine
parameters. The engine specification can be found in Table 4.1.

Table 4.1: Engine Specifications

Parameter Unit

Max torque Newton Meter (Nm)
Speed at maximum torque Revolutions per minute (RPM)
Maximum power HP
Speed at maximum power RPM
Average torque Nm
Average loss Percentage
Speed points full load RPM
Static torque points full load Nm

4.5 Transmission

Similar to the engine, transmissions are usually unique across different vehicle
models. The transmission specification can be found in Table 4.2.
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Table 4.2: Transmission Specifications

Parameter Unit

Gear switch time Seconds
Start speed Revolutions per minute (RPM)
End speed Revolutions per minute (RPM)
Gear Ratio Multiplier value
Final drive ratio Multiplier value

4.6 Wheels

The wheels are a highly variable component when comparing different vehicles.
The configuration of wheels uses one of the basic wheel size specified by the
manufacturer. The wheel characteristics can be found in Table 4.3.

Table 4.3: Wheel Characteristics

Parameter Unit

Wheel radius Meter
Wheel circumference Meter
Friction Newton

4.7 Vehicle Dynamics

The remaining parameters are dependent on the whole car. They can be found
in Table 4.4.

Table 4.4: Vehicle Dynamics and Performance

Parameter Unit

Maximum steering angle Radians
Wheelbase Meters
Braking force Newton
Mass Kilogram
Air resistance Newton
Aerodynamic drag Newton
Frontal area Square meter
Maximum speed KPH
Acceleration time 0 to 100 KPH Seconds

4.8 VW Golf VII

The VW Golf VII was selected to represent a casual everyday car compared to
the rather sporty Jaguar F-Type. The file VW-Golf-7_2-0-TDI_DSG.yml de-
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scribes a Volkswagen Golf MK7 with an 2.0 litre diesel engine which provides
150 HP. The used parameters from Table 4.5 correspond to models built from
12/2016 to 05/2020, and mainly influence the motor and transmission type.
There has been a facelift in 2017, which slightly changed the exterior und inte-
ger design, but has no impact on technical parameters.

The transmission type is a DSG, which is an automatic transmission in the
Volkswagen Group, and has seven gears. The specific transmission type is called

”
DQ381“. The default wheel and tires suggested by the manufacturer are of the
dimensions 205/55 R16.

Some of those specifications are not strictly bound to the car model itself,
i. e. the transmission

”
DQ381“ is used in many other vehicles. The information

regarding the specifications of this vehicle was gathered via several internet sites
and is linked in the subsection below.

Important note:
In comparison to the Jaguar F-Type configuration file, the golf has two different
final gear ratio for different sets of gears. Due to this fact, the Jaguar F-
Type configuration was adapted to represent this structure.

Table 4.5: VW Golf VII Model Details

Parameter Details

Model VW Golf VII 2.0 TDI with DSG
Build Duration 12/2016 - 05/2020
Remarks The Golf VII had a facelift in 2017 (no

impact on specifications)
Engine Type Diesel
Engine Series VW EA288
Engine Code Letters CRMB, DCYA, DEJA, CRLB
Displacement 1968 cm3

Max. HP @ RPM 150 @ 3500 - 4000
Max. Torque @ RPM 340 @ 1750 - 3000
Used Wheel Size 205/55 R16
Transmission Type DQ381
Remarks on Transmission DSG with 7 gears (From 12/2026, 6

gears previously)
Drive Type Front wheel drive

4.8.1 Notes for parameters

Mass

• The mass is calculated by adding 100 kg to the curb weight (Leergewicht)
of the car.

• Curb weight is 1316 kg.

• 100 kg is split into:
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– avg. of 80 kg for one person.

– roughly 20 kg of fuel (diesel mass = 0.820g per litre times half tank
volumes = 25 litres).

Final Drive Ratio

• The used transmission has two values instead of a single global one for
each gear.

• The final drive ratio is assigned to each corresponding gear.

Steering Angle

• Auto Motor und Sport specifies a
”
40°steering angle for conventional ve-

hicles“ [4].

• 40°converts to 0.6981 radians.

Braking Force

• In Newton, given by weight times deceleration.

• Deceleration depends on how hard the brake is applied.

– Emergency braking equals about 10.6m/s2 for the Golf MK7 [11].

– The Minimum required by law is 2.5m/s2 [10].

– For calculation 7m/s2 is used, which represents medium braking.

• 1416 kg times 7m/s2 equals 9912N.

Aerodynamic drag, Frontal area and Air resistance

• The values were taken form the collection of Rüdiger Cordes [14].

Gear Switch Time

• The values were taken from VWVortex [16].

Gears

• The following links contain information about the gear ratios:

• https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-g

ear-ratios.360005/

• https://forums.tdiclub.com/index.php?threads/shift-points-o

n-mk7-tdi-manual.431653/

– Even though internally manual gears are used in the model, the shift
points should be the same as in the acquired data.
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Engine

• The dyno chart was taken from More BHP [5].

– It shows two graphs, the important one is the thick line representing
the stock engine.

– The chart was manually evaluated using Engauge Digitizer [32].

4.8.2 Further Sources

• Car:

– https://de.wikipedia.org/wiki/VW_Golf_VII#Dieselmotoren

– https://carwiki.de/vw-golf-7-technische-daten/(mustbema

nuallysettoDiesel/150PS/2.0TDI(150PS)DSG)

– https://www.auto-data.net/de/volkswagen-golf-vii-facelif

t-2017-2.0-tdi-150hp-dsg-27831

• Wheels:

– https://www.1010tires.com/Tools/Tire-Size-Calculator/20

5-55R16?active=0&ismetric=true

4.9 Jaguar F-Type

The configuration of this vehicle model originates from the pre-project and
contains the specifications of a Jaguar F-Type. These specification are depicted
in Table 4.6 The Jaguar F-Type was selected to represent a sports car amongst
the vehicles that will be simulated.

Table 4.6: Jaguar F-Type Specifications

Parameter Specification

Model Jaguar F-Type
Engine type 3-litre V6 DOHC V6
Max. HP @ RPM 340 @ 6500
Max. torque @ RPM 450 @ 3500
Used wheel size 295/30 R20
Transmission type Automatic, ZF8HP, RWD
Drive type Rear-wheel drive

4.9.1 Notes for parameters

Mass

• The mass is calculated by adding the driver’s weight to the curb weight
of the car.

• Curb weight is 1741 kg.

• Driver’s weight is 80 kg.
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Engine

• Engine speed for maximum torque: 3500 rpm

• Engine speed for maximum power: 6500 rpm

• Maximum engine speed: 6500 rpm

• Minimum engine speed: 1000 rpm

Transmission

• Highest gear: 8

• Final drive ratio (differential): 3.31

• Driveline efficiency: 0.85

Tires

• Tire width: 0.295 m

• Rim diameter (converted to meters): 0.508 m

• Wheel (tire) friction coefficient: 1.1

• Rear axle load coefficient: 0.65

Vehicle

• Drag coefficient: 0.36

• Frontal area: 2.42 m2

The parameters were taken from X-engineer.org [48]. Additionally, this site
provides a single final_drive_ratio parameter that applies to all gears and
therefore was initially being set only once. Due to the introduction of the VW
Golf configuration ( section 4.8) which has two different final_drive_ratio,
this parameter was copied and is the same for both final drive ratios.
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Chapter 5

Sensor Augmentations

This section describes various sensor augmentations made during the project
group. The augmentations are ranging from hardware modifications to addi-
tional ROS topics.

5.1 Camera

The camera of the TurtleBot streams the image data in front of the TurtleBot
into the ROS network. The camera data can then be used to perform lane and
object detection in the frames sent by the camera. Lane boundaries and road
participants are examples of objects to be detected.

5.1.1 Camera Service

The camera service is used to stream image data into the ROS network. It can
be used in two ways:

• With a web server

• Headless

With a web server This variant uses a web server to show the image stream
sent by the TurtleBot camera on a webpage. The server is hosted on the Turtle-
Bot’s network address and is running on port 5000. To see the images, the
webpage has to be refreshed once after starting the camera service. This vari-
ant is more suitable for troubleshooting.

Headless The second variant needs no user interaction for sending messages.
If you call the ROS service

/camera_serice

it will either start or stop sending images.

Parameters In the service request, different values are used for parameters
as

”
Opcodes“ to customize how the node should behave. These are listed in Ta-

ble 5.1, Table 5.2, Table 5.3, Table 5.4:
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Table 5.1: Parameters for the camera service request

Parameter Description Default Value

request The request opcode 0
frame width The requested frame width of images 640
frame height The requested frame height of images 480
frame rate The framerate to capture images with 10

Table 5.2: Table for Opcodes

Opcode Description

0 Toggels camera server

Table 5.3: Parameters for the camera service response

Parameter Description Default value

status The response Code 0
message A message with status information n.a

Table 5.4: Table for status codes

Opcode Description

0 Success

5.1.2 Camera Mount

The TurtleBot already had a static mount for the camera attached. To be able to
dynamically change the viewport of the camera, the simple mount was replaced
by a more advanced mount. This new mount uses a pan-tilt design to make the
camera angle adjustable on two axles. The new mount was designed for and
printed using a 3D-printer. For the assembly, small screws were used and the
servos were put in place, even though they are not connected or controlled yet.
It can be seen in Figure 5.1.

5.2 Odometry

The TurtleBot uses the Odometry topic /odom to publish information about the
TurtleBot’s position and movement. This data is however quite nosiy. In order
to acquire smoother data, an Extended Kalman Filter is employed to combine
Odometry and IMU data. The IMU sensor yields data about the TurtleBot’s
orientation. The topic /odometry/filtered is used to publish the filtered data.

The filter was implemented using an online guide by
”
Automatic Addi-

son“ [3]. The following dependency is required for the filter node:
ros-humble-robot-localization
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Figure 5.1: New camera mount with movable joints to control the camera with
servo motors.
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Chapter 6

TurtleCar-Core

There are multiple ROS Nodes running on the TurtleBot which together form
TurtleCar-Core. The architecture of each node is described here. In order to run
these nodes, a specific setup of the image running on the TurtleBot is required,
which is explained here as well.

6.1 TurtleCar Node

In the module called TurtleCar-Core, the main parts of the software controlling
the TurtleBot are implemented. Its tasks are to gather sensor data, define
a control action according to its current scenario and goal, and publish that
action to the relevant actuators.

6.1.1 Architecture

The diagram in Figure 6.1 shows the basic building blocks of the code. It is
simplified in the way that the TurtleCarNode class is the root class and consists
of all other classes. In order not to clutter the diagram, these compositions are
not drawn.

Figure 6.1: Static view of the architecture of the TurtleCarNode
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The architecture is modular and can be separated into these classes:

• TurtleCarNode: The TurtleCarNode class is the root class. It provides
the ROS interface which is used by other parts of the software to subscribe
or publish to ROS topics. It is also the root for the tree of dependent
classes.

• Model: The model represents the observable state of the robot. It con-
tains information on the state of the vehicle as well as the environment
and the control actions taken. It is filled by the SensorEvaluator classes
and read out by the Observer.

• Sensors Evaluators: These classes read out sensor values by subscribing
to their ROS topics and processing the information gathered to create
meaningful information from them, i. e. detecting obstacles or lanes. The
processed information is added to the Model. To gain information from a
sensor and put it into the model, this class needs to be inherited from.

• Observer: This class acts as an Observer in the context of control de-
sign. The data in the model only represents the observable state, which
may not be the complete state information needed to control the system.
The observer estimates the actual state from the observable model. The
Controller and the Visualizer read from this observer instead from the
Model directly. If the model is amended, the observer probably has to be
altered as well.

• Controller: Reads the state information provided by the Observer and
decides on a control action depending on that state. Writes the control
action back into the Model. Adaptation of the robots actions is done here.
Third parties are able to write their own controllers, in order to implement
driving functions.

• Visualizer: Reads the state information provided by the Observer and
visualizes it through a GUI. You may add additional visualizers.

• Transposer: The goal is to simulate a car which has a different behaviour
than the TurtleBot. The Transposer reads the control actions from the
Model and maps them to the behaviour of the car model. It then pub-
lishes messages via the TurtleCarNode to the bot’s actuators so that the
robot shows that behaviour. Since it simulates the car, it also writes the
information about the car’s new state - like the current gear - back into
the Model.

6.1.2 TurtleCarNode Core Loop

The core loop of the TurtleCarNode on a high level is shown in figure Figure 6.2.
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Figure 6.2: Start and core loop of TurtleCarNode
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6.1.3 Filtering Sensor Values

The information gathered from the sensors via the ROS interface may need to
be filtered to be usable by the modules interpreting that sensor data. In the
context of the project group, two variants of filtering are defined, which are
reflected in different aspects of the architecture:

Technically Necessary Filtering There exist technical reasons for filtering
values directly when they are retrieved from a ROS message. One example
is the LIDAR: It has a varying resolution which must be upscaled to a fixed
resolution by interpolating missing values. This is done directly when retrieving
the values. Sensor Evaluators using the standard lidar.subscribe_lidar()

function implicitly receive the fixed-resolution values. When necessary, a similar
standard filtering behaviour may be implemented for other sensors as well.

Task Specific Filtering Some Sensor Evaluators may have requirements for
filtering the sensor values that are not necessary for processing the values, but
are functional requirements related to their task. These filters are implemented
in the context of the Sensor Evaluator and only used to fulfill its task, but do not
influence the input to other Sensor Evaluators. Each Sensor Evaluator has to
explicitly implement the filters it needs or explicitly use a filter function shared
between evaluators.

6.1.4 Unit Testing

pytest [28] is used to perform unit tests. For mocking, mockito-python [34] is
used. When writing unit tests, the following criteria should be met:

• Test one specific aspect of the code under test

• Mock the complete environment of the function. Everything that is not
part of the code under test should not be executed.

• If the tests or the mocking effort is high, consider refactoring the tested
code to enable smaller tests.

All tests are located in the tests directory.

6.2 TurtleBot ROS2 Image

It is possible to automatically build a minimal, customized image, which is real-
time capable, for the TurtleBot. The repository which can be used for this can
be found in the project groups GitLab [24].

It is important to note that the image cannot be built using the
docker image, due to limitations of systemd-nspawn.

Dependencies are customizable by opening

image_builder/data/jammy-rt-hubmle/scripts/

and adapting the file phase1-target. Under the comment
”
user-specific depen-

dencies“ it is possible to add desired dependencies via apt.
To build the image, change to the top folder and run
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make jammy-rt-ros2

After that, a fully bundled .img file is generated, which can be burned to a
sd card. Detailed documentation can be found in the repository. Please note
this is an updated version of another public project called Raspberry Pi image
with ROS 2 and the real-time kernel [20].
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Chapter 7

Code Quality

In this part of the documentation, elaboration on the decisions regarding Cod-
ing Style and Static Code Analysis (SCA) can be found. In the context of the
project group, Coding Style and SCA are differentiated. Coding Style includes
the ruleset and principles which influence what code is produced. SCA consists
of development tools and CI/ CD methods, which allows maintaining parity
to the set Code Quality. CI stands for Continuous Integration, and is a typi-
cally automatically triggered process that performs tasks such as checking the
source code, running tests and ensuring that the source code is compilable [19].
With this process, the goal of having a stable code repository in terms of Code
Quality is supported, since automatic Code Quality checks are possible. This is
explained in more detail in section 7.3.

7.1 SCA

There are two main parts of SCA used in the project group: formatting and
linting. The coding style is provided by the tools used.

Formatting is the way how the code is formatted: which indentation size
is used, how long lines should be and where newlines are located. Formatting
ensures that each line of code that is written is in a format that is comprehensible
by each member of the project group. The code formats automatically and no
further manual intervention is required.

Linting on the other hand makes sure that the code that is written is error-
free and adheres to a certain code style: Here, checks against unused variables,
long lines and unnecessary complexity are employed. Some linting errors are
also fixed by formatting, i. e. long lines. But because fixing most linting errors
is a non-trivial task, oftentimes manual intervention is required.

7.2 Development Tools

In order to ensure that the code is in the correct format and to reduce its
errors, tools are employed. For formatting, use black [6] is used. For linting,
use ruff [42] is used.

Both tools were chosen for the following reasons:
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• Opinionated

– Being opinionated allows for adhering to community rules forged by
years of development time.

– At the beginning, there is no desire to employ custom, project group
specific rules. Everything is changing constantly - there is no need
for complex configurations, but for quick usage.

• Modern

– Modern tools allow for staying cutting-edge.

– They improve the readability of the codebase.

• Fast

– Being fast means every machine can run the tools, even if one devel-
oper happens to have a slow machine (by modern standards).

– There is no need to worry about the code base growing so large that
the SCA tools will take an unreasonable amount of time to run.

– Limited numbers of job runners are available in GitLab, as the in-
stance is self-hosted. Therefore, being fast reduces the occupation on
those limited resources.

7.3 Continuous Integration

In this section, the ways CI is used in the project group are described. Also, the
configuration of the employed pipelines is explained. Pipelines are essentially a
set of steps the source code has to pass in order to be valid.

7.3.1 Integration in the workflow with CI

In order to allow constant integration, black and ruff are used not only locally,
but also in the GitLab projects pipelines. This ensures that every commit and
merge request is checked.

If black detects that the format is not correct or ruff finds any linting er-
rors, merging the respecting merge request is disallowed. Also, reviewers will
immediately take notice of this and will ask the developer to fix this.

This ensures that the code in the stable branches of the projects remains
protected and in a valid state. Additionally, this provides fast feedback for
developers whether their code contains errors. This makes locating and fixing
errors faster.

7.3.2 Pipeline

In the pipeline, ruff and black are executed. In the following, the mechanics of
the pipeline are documented. This part explains the following:

• Elaboration on the pipeline concepts, not the details

• Explanation of the most important caveats, like caching and sometimes
allowing pipes to fail

• Starting point for getting to know the pipeline
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How the pipeline works The following will explain the structure & concepts
of the pipeline in use. For a better understanding, please take a look at the
.gitlab-ci.yml. It is included at the root of the turtlebot project.

In the implementation of the pipeline configuration, the official Python
docker image is used, so that some configurations for the executing runner are
already present.

Pipeline Building Blocks

• before_script Block

– Ensures that a virtualenv is used

– Debugs the Python version

– Executes before each job

• build-job

– Currently only a stub

– Might be used later, when actual building of the ros packages is
required

• format-test-job

– Runs black and checks for formatting errors

– Prints encountered errors to ‘stdout‘ for debugging purposes

• lint-test-job

– Runs ruff

– Looks at the .pyproject.toml file in order to configure ruff

– Generates a codequality artifact .json, which is used by GitLab to
measure code quality

– Also prints all encountered errors and warnings to stdout

– By using dependencies, this job only runs after format-test-job

Important note: The test in the jobs name refers to the task of testing if the
source code is in a conforming state. This does not mean that the jobs are only
’test’ versions.

Caching the installed pip packages The cache is used in order to let the
runner cache installed packages, so that ruff und black are not reinstalled in
every run of the pipeline.

By configuring PIP_CACHE_DIR, pip is told to cache its dependencies and
installed packages in the directory provided - which are defined as a pipeline
cache directory as well. Therefore, the cache directory gets cached in between
job runs and reused.
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Conclusion: Working with the pipeline Now that the pipeline is con-
figured, it is possible to review Merge Requests based on their generated code
quality report. Also, this makes sure that every line of code is formatted in a
consistent way. When committing to a custom branch, or merging to ‘main‘,
the pipeline is evaluated and run. Project members are required to provide
conforming source code, and get hints to why their changes might not be of the
desired quality.

44



Chapter 8

Lane Detection

For a TurtleBot used in the context of autonomous driving, the ability to per-
ceive and understand its road environment is of high importance. One crucial
aspect of this perception is the lane detection, which involves identifying and
tracking the lanes on the road. Accurate lane detection is a fundamental build-
ing block for many autonomous driving functions, from simple lane-keeping
assistance to complex path planning and decision-making algorithms. This sec-
tion introduces two approaches to lane detection, one based on LIDAR and on
based on camera data.

8.1 LIDAR-Based Lane Detection

LIDAR technology plays an important role in the project’s implementation of
lane detection, as the LIDAR provides essential data about the robot’s sur-
rounding. The concept here is to utilize this data to calculate and represent
lane boundaries accurately. Visual lanes as indicated by lane markings are
therefore not directly detected but are rather projected based on a given road
configuration and a rightmost boundary that is detectable by the LIDAR.

8.1.1 Preconditions

The calculation of the lane boundaries using LIDAR assumes that a certain
structure for the lanes is always present. One particular assumption is that
there always exists a wall that is detectable by the LIDAR sensor on the right
side of the road. Furthermore, the first lane always has a distance of ws to this
wall, forming a road shoulder with constant width. Additionally, every lane has
the exact same constant width, noted as wl in the following.

8.1.2 Coordinate Transformation

The process of the LIDAR-based lane detection begins with transforming polar
coordinates into the Cartesian coordinate system. This conversion simplifies
subsequent processing steps and provides a clear representation of the environ-
ment. Based on a respective angle αi and a distance value di of each LIDAR
measuring point i, Cartesian coordinates xi and yi for such point can be created
using the common formulas x = d ∗ cos(α) and y = d ∗ sin(α).
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8.1.3 Boundary Detection and Lane Projection

Once in Cartesian coordinates, the system calculates the lane boundaries based
on the distance of the robot from the right wall. In particular, this calculation
uses the coordinates of the wall that is detected by the LIDAR between 230°
and 300°. This is effectively any wall that is to the right of the TurtleBot’s
facing direction. A B-spline is then fitted to these data points, ensuring smooth
and continuous representation of the lane-defining wall. Using B-splines offers
the possibility to control the degree of the lane boundaries, which is useful to
extend the lane projections from straight to curved roads. For individual points
of the given B-spline, normalized orthogonal vectors are then calculated. This
is done by first calculating a tangential vector of a given point on the B-spline,
normalizing that vector and then rotating it by 90° into the correct direction.
For a given lane n ≥ 0, these normalized vectors are used to determine the
position of the lane’s right (j = n) and left (j = n+ 1) boundary, if multiplied
with the factor (ws + j ∗ wl).

8.1.4 Current Lane Determination

Identifying the current lane is the next critical aspect of the lane detection. This
is accomplished by evaluating the closest measured distance to the wall that is
used as a basis for the lane projection, as introduced above. For example, if the
robot’s facing direction is parallel to the wall, the angle for the closest distance
is typically at 270°. Given that this minimum distance to the boundary wall is
dw, the current lane number nTB can then be calculated as follows:

nTB =

⌊
dw − ws

wl

⌋

8.2 Camera-Based Lane Detection

Limitations of the LIDAR-based lane detection approach, such as the require-
ment of a wall being present on the lane boundary, have motivated the imple-
mentation of a camera-based approach. Camera-based lane detection allows the
TurtleBot to detect lane markings using visual data from its onboard camera.
The project group has explored two distinct methods for lane detection in cam-
era images: classical computer vision techniques and an AI-driven approach.
The latter, overcoming limitations of the former, has been adopted.

8.2.1 Classical Computer Vision Approach

The initial approach for the detection of lanes was based on the Hough Line
Transform, which is a technique for detection of straight lines within images.
The overall concept of this method was inspired by [25] and followed several
stages Figure 8.2 (outputs are visualized in Figure 8.1):

1. Region of Interest (ROI) Segmentation: Isolation of the road segment from
the camera’s field of view.

2. Preprocessing: Conversion to grayscale, blurring, edge detection via the
Canny algorithm and morphological closing to prepare the image for the
Hough Transform.
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3. Hough Line Transform: Detection of potential lane line candidates in the
preprocessed image.

4. Postprocessing: Filtering and clustering of the lane line candidates.

5. Bird’s-eye View Transformation: Transformation of the coordinates for
further use.

6. Lane Line Extension: Extrapolation of the detected lines.

7. Lane Data Calculation: Estimation of the TurtleBot’s current lane and the
positions of adjacent lane boundaries, followed by scaling of the detected
coordinates.

(a) Preprocessed input image (b) Processed detected Hough-Lines

(c) Bird’s eye view of the input image (d) Bird’s eye view of the Hough image

Figure 8.1: Outputs of the stages of the initial approach.

The segmentation ensures a focus on the road, while the preprocessing steps
reduces noise and filtered unnecessary information from the image to ensure
better performance of the Hough Line Transform. Since the Hough Line Trans-
formation has a tendency to detect multiple lines where there should only be one,
clustering and filtering of outliers allows increases the precision of the detection.

While this approach performs well in predefined simulation scenarios, it isn’t
sensible in the less refined real-environment setup. Additionally, a large caveat
of it is the inability of detecting curved lines, which is a crucial aspect for the
project group, and thus necessities the development of another approach.

8.2.2 AI Enhanced Implementation

In contrast to the first approach, the AI-driven approach solves the problem of
lane detection using a pre-trained AI model, specialized in the detection of lane
lines on highways. The followed approach, called “Ultra Fast Lane Detection”
(UFLD) uses a ResNet-18 based model trained on the TUSimple dataset [44],
which consists out of 6408 road images on US highways with the resolution
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1280×720 pixels. UFLD delivers a high-performance solution to lane detection
suitable for the computational constraints of this project. The models’ archi-
tecture is described in the paper [39] and the authors have provided code for it
in [13].

An important consideration when researching the feasibility of the usage
of an AI model for this task was the limited computational power accessible.
Since the project requires for the computation to run on a Laptop CPU or on
the TurtleBot itself, most available AI models are not suitable. A solution for
this issue is provided in [22], which offers an implementation of UFLD in the
ONNX format, while the ONNX version of the model itself can be downloaded
from a pretrained model collection [37]. ONNX is an open source library, which
amongst other things provides a hardware optimized format for AI models,
allowing performant inference on CPUs. The lane detection process in this
approach works as follows (Figure 8.3):

1. Cropping: Cropping of the captured images to a required aspect ratio.

2. Inference: Passing of cropped images to the AI model, which detects the
lane lines and returns their coordinates Figure 8.4.

3. Bird’s-eye View Transformation: Transformation of the coordinates for
further use Figure 8.5.

4. Lane Line Extension: Extrapolation of the detected lines.

5. Lane Data Calculation: Estimation of the TurtleBot’s current lane and the
positions of adjacent lane boundaries, followed by scaling of the detected
coordinates.

The last three steps remained the same as in the initial approach, as they are
independent of the actual lane detection method.

8.2.3 Preconditions

For optimal performance, the road texture used for the Gazebo simulation of a
highway environment has been updated with a higher resolution one. Addition-
ally, the camera height and angle have been adjusted to match the perspective
of the images in the TuSimple dataset for optimal detection. Furthermore, the
captured images with the size of 640x480 pixels (height, width) are cropped to
the resolution 640x360, which is a multiple of the resolution of the images in
the TuSimple dataset (1280x720). These aspects influence the model’s ability
to discern lane lines and present a challenge for detection when using the actual
TurtleBot, as the real-world camera setup and environment are not as easily
adjustable as the simulated counterparts.

8.2.4 Bird’s-eye Perspective Transformation

In order for the detected lane line coordinates detected in images to be compati-
ble with the internal coordinate system, a Bird’s eye view perspective transform
needs to be applied to them. This is done by using predefined source points and
destination points for the transformation, which have been manually established
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Figure 8.2: Stages of the lane detec-
tion in the original approach.

Figure 8.3: Stages of the lane detec-
tion in the AI enhanced approach.

Figure 8.4: The lane lines detected by
the AI model.

Figure 8.5: The image after the per-
spective transformation.

using the images captured by the camera. As the real camera and simulated
camera differ, the adequate camera lane detection configuration must be loaded.
Using the set points, a transformation matrix is computed and applied to the
detected lane line coordinates to acquire the Bird’s eye view coordinates. The
implementation of this functionality is done based on [18].
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8.2.5 Lane Data Processing

Lane lines below a certain length are filtered, as short lane lines detected by
the model tend to be more inaccurate, based on performed experiments. Since
the camera perceives certain distance in front of the TurtleBot (varying on the
camera’s field of view), the lane lines are extrapolated “backwards”. This is
done because the lane coordinates at the location of the TurtleBot are required
for further calculations. Finally, the lane line coordinates are rescaled to match
the dimensions of the internal coordinate system.

8.2.6 Current Lane and Boundary Calculation

The current lane of the TurtleBot is determined by subtracting the amount
of lane lines found left of the TurtleBot from the defined lane count. The
TurtleBot’s position within the lane is similarly calculated using the defined
lane width and the distance of the TurtleBot to the closest left and right lane
lines. Both of these calculation use the processed lane coordinates.

8.2.7 Advantages and Limitations

The camera-based approach is an alternative to the LIDAR-based lane percep-
tion and has advantages such as not requiring a border wall next to the road
for it to work. Additionally, it is able to predict coordinates of lane lines which
are partially obstructed by objects such as other vehicles on the road, which the
LIDAR approach cannot.
However, this approach is not perfect as the nature of the AI model makes us-
ing it to acquire reliable lane information difficult. The detection is affected
by various factors such as lighting conditions or reflectivity of the road. For
instance, as depicted in figure Figure 8.3 the left lane line is barely detected,
even though it is visible. This inconsistency may originate from the pretrained
models training data, which consists of images captured using a camera with a
different field of view and resolution. Additionally, the environments used in the
project deviate from the environments in the models training data, these factors
likely contribute to the observed discrepancies as the model has limited gener-
alization capabilities. It was found through testing that the lane lines making
up the boundaries of the current lane the TurtleBot is on, are detected most
consistently, whereas detection of other lane lines is less reliant.
A consideration to be made is the retraining of the AI model using the same
dataset (TUSimple), but adjusted for the available camera. This improvement
should allow the model to provide better predictions for the images captured
by the camera used in this project and thus increase the quality of the lane
detection.
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Chapter 9

Object Detection

This section presents the methodologies employed for object detection in the
project, showcasing camera-based and LIDAR-based techniques. The imple-
mentations of these methods in both simulated and real-world scenarios are
described and their setup, advantages, and limitations within the context of
this project are explored.

9.1 Camera Based Object Detection

Various ways of camera-data-based object detection have been researched and
evaluated as a part of the project. Considerations included training an object
detection AI model (such as YOLOv7) or using traditional computer vision algo-
rithms. The AI based approach, often involving convolutional neural networks
(CNNs), is known for achieving high accuracy in object detection. However,
its complexity and (usually) resource-intensive nature makes it less ideal for the
scope of this project. Traditional computer vision algorithms offer a less compu-
tationally demanding alternative, but they might require additional conditions
to be met.

This project uses a classical approach, enabled by the fact that full control
over the environment and the TurtleBot is available: Fixed synthetic markers
with a known layout. Strategic placement of such markers on to-be-detected
object ensures optimal visibility and ease of detection. The simplicity of this
approach translates into faster processing on the TurtleBot, making it an effi-
cient solution. Moreover, the required preparation of the markers on the de-
tectable objects leads to the natural elimination of possible false-positive object
detections.

9.1.1 Marker Systems

During research of object detection using fixed markers, two prominent state-
of-the-art marker systems came into focus: AprilTag [2] and ArUco [35]. Both
methods employ square markers, based on a visual bit representation of unique
ID patterns. They facilitate rapid and accurate identification, making them
suitable choices for applications with limited resources.
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AprilTag markers are slightly more complicated to generate than ArUco
markers, however, pre-existing repositories that contain different AprilTag-families
eliminate the need for individual marker generation. Additionally, the detection
of AprilTag markers is implemented in a ROS package, which made it seem like a
preferable choice considering that the TurtleCar application already uses ROS2.
However, the AprilTag package is not fully migrated from ROS to ROS2, which
complicates its actual utilization and would require additional debugging. On
the other hand, the ArUco marker system is included in the OpenCV python
package, which is already used by the TurtleCar application. Integrating the
generation and detection of ArUco markers was therefore straightforward for
the existing architecture and was the preferred choice.

9.1.2 ArUco Marker

The ArUco library allows the detection of ArUco markers along with their dis-
tances. The requirement of making the marker detection as reliable as possible,
rendered the ArUco marker family DICT 4X4 50 the most promising. 4×4 indi-
cates the bit size, whereas 50 is the number of available markers in that family.
Choosing the minimum in both regards ensures a maximum Hamming Distance
between the marker IDs and better overall detectability.

9.1.3 Environment Preparation

For the successful usage of fixed markers, preparation of the controlled envi-
ronment is necessary in both simulation and reality. For that, all marker IDs
available in the chosen marker family are mapped to an object type:

• IDs 0-9: other TurtleBots

• IDs 10-49: cuboid obstacles

The placement of markers follows a respective strategy for the two different
object types: (1) TurtleBots are equipped with a single marker positioned on
their backs, serving as a distinctive

”
license plate“, (2) cuboidal obstacles require

four distinct markers, placed on each corner of their detectable faces. Using four
markers instead of one enables the accurate calculation of the obstacle’s size and
rotation along with the distance.

To achieve optimal precision in both the simulated and the real environment,
an initial one-time camera calibration process needs to be conducted. This
process obtains camera parameters, which can then be utilized for camera based
detection tasks. For the calibration, a special board with ArUco markers that
can be seen in Figure 9.1a is used. With a set of roughly 50 images that capture
the calibration board from different angles, the ArUco library is used to acquire
parameters of the camera, which are then saved to a config file for further usage.
Examples of such images can be seen in Figure 9.1b and Figure 9.1c.

Additionally, to allow the object detection to accurately calculate distances
to the markers, cohesive marker sizes withing reality and the simulation are
required. To determine the optimal marker sizes, markers were experimentally
printed and attached to the respective objects in reality. TurtleBots in the real
environment impose some restrictions, as their license plate should not restrict
any other sensors or the overall mobility of the TurtleBot. After the optimal
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(a) Aruco board used for camera calibration.

(b) Example image used for the camera
calibration in reality.

(c) Example image used for the camera
calibration in simulation.

Figure 9.1: Camera calibration for ArUco detection.

marker sizes were established, fitting 3D models could be created. The resulting
layout for the TurtleBot markers can be seen in Figure 9.2a and Figure 9.2b
and those for the obstacles can be seen in Figure 9.3a and Figure 9.3b.

9.1.4 Marker Detection

The actual marker detection process is mostly independent of whether the en-
vironment is simulated or real, apart from the correct camera calibration that
has to be loaded. The detection simply uses the available camera images and
leverages the ArUco library to detect all markers in the image. After that, the
same library is used to calculate the poses and distances of the individual mark-
ers. For each one detected, the object type and the transform/rotation vector
are recorded in the TurtleCar-Core Model.
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(a) TurtleBot marker in reality. (b) TurtleBot marker in simulation.

Figure 9.2: TurtleBot marker layout in both environments.

(a) Obstacle marker in reality. (b) Obstacle marker in simulation.

Figure 9.3: Obstacle marker layout in both environments.
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Chapter 10

Path Planning

In this section, the planning of paths for a vehicle is described. First, Path Plan-
ning and Trajectory Planning are defined, and context to these topics within the
project group is given. Next, the implementation of Path Planning is explained.
Also, the end of the section contains guidance for building and integrating a cus-
tom path planning module.

10.1 Definitions and Context

First, Path Planning is differentiated from Trajectory Planning, and an intro-
duction to what both of these terms mean in the context of the project group
is given. For further references and mathematical function definitions, see Tra-
jectory Planning [36].

Path Planning A path P is a continuous function which connects a start
qstart and a goal qgoal in a coordinate system. Therefore, the domain of P
is [0, 1] and its co-domain is C, i.e. the coordinate space that is used. P is
devoid of any time information, and only resembles the geometric component.
When enriching it with time information, it becomes a trajectory [36]. For us,
planning a path means to plan out a geometric ordered list of points that the
robot should follow, disregarding any time information.

Trajectory Planning A trajectory Π is a path P endowed with a time pa-
rameterization s. s is a strictly increasing function, which gives the position on
the path for each time instant t. Thus, the same path P can give rise to many
different trajectories Π [36]. For us, planning a trajectory means to take into
account time information to the planned path.

At the current state of the project group, trajectories are not planned, only
paths. Planning trajectories would involve many more considerations, which
have not been prioritized as of now.

10.2 Implementation

The architectural overview of the path planning implementation can be seen
in Figure 10.1. It closely resembles Figure 6.1, but elaborates more on the path
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planning part.

Figure 10.1: Architectural overview with the path planner.

10.2.1 Processing the Lane Data

Since the original sensor readings contain incomplete and not ready-to-use data,
the data is processed before usage. Enhancing the lanes refers to enhancing the
lane data provided by the sensors with i. e. interpolation, and is done by the
Observer.

10.2.2 Lane Format

Each lane is represented by two borders (left and right), each of of the lane
borders consists out of multiple detected lane points.

10.2.3 Enhancing the Lanes

During processing of the lane data the border points are interpolated using a
Euclidean distance formula. The formula is the following, using points p and q:

Distance(p, q) =
√
(q1 − p1)2 + (q2 − p2)2

When the distance of two consecutive points in the border list exceeds a
parameterized threshold, new points are interpolated in between them, also
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using this distance formula. There is no formalized threshold defined, the results
of different parameters are tested empirically.

10.2.4 Planning the Path

Now that the lanes contain enough data points to use, a plan for the path for
the robot to take can be created. In order to do that, the middle of the border
points from the enhanced lane data is calculated and thus creates a path along
the center of a lane. The path is visualized via the LanesRenderer.

10.2.5 Example images

In this section, example images for the path planning module are demonstrated.
The snapshots are taken directly from the debugging tool, where orange points
visualize paths and yellow points indicate lanes.

Figure 10.2: An ordinary
path

Figure 10.3: A more com-
plex path

Figure 10.4: Lower bor-
der interpolation resolu-
tion

Figure 10.5: Higher in-
terpolation resolution for
the border

Figure 10.6: Higher sam-
ple rate and offset to the
left of the border
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Chapter 11

TurtleCar-Test

TurtleCar-Test is a test framework developed by the project group to test the
implemented driving functions on a TurtleBot. In collaboration with Gazebo, it
allows interactive, headless, scenario-based testing. In this section, related work
is presented and then the architecture of TurtleCar-Test based on requirement
analysis explained. Furthermore, the creation of tests is explained.

11.1 Traffic Sequence Charts

Traffic Sequence Charts (TSCs) proposed by Damm et al. [15] provide a spec-
ification language for defining test scenarios for autonomous vehicles. It allows
capturing of their behavior in all possible traffic situations. A TSC specification
consists of a world model that defines classes of objects (e. g. cars) together with
their attributes (e. g. position and velocity) and the dynamics of moving objects,
represented by a set of snapshot charts. A symbol dictionary links graphic sym-
bols to their respective objects in the world model. These charts can then be
translated to formula in first-order multi-sorted real-time logic.

Snapshot charts describe the evolution over time (e. g. via a snapshot se-
quence) and are used to visually depict potential traffic situations. They may
contain

• present objects,

• relative placements of objects,

• defined absolute distances between objects,

• timing constraints, and

• so-called somewhere- and nowhere-boxes to specify the presence of an
object somewhere inside an area or the absence of an object inside a
certain area.

Also, they can be composed of premises and consequences. An example
snapshot sequence is given in Figure 11.1.

The first two snapshots in the dashed hexagon on the left define the premise,
the consequence is specified via the snapshots right of the hexagon. The premise
denotes that there is an obstacle in front of a car. Both are on the same lane
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Figure 11.1: Change lane to avoid collision, if the next lane is free [15]

and less than d1 meters apart. From d4 to d5 there is no car to the lane left
of the car (second snapshot). If the premise is fulfilled, the car has to change
lanes to avoid collision (last three snapshots).

The TSCs exhibit possibilities to (relatively) place objects, define their at-
tributes (e. g. velocity), define areas and denote premises and expected conse-
quences. These possibilities were also made available in TurtleCar-Test. How-
ever, the TSC specification language was not adopted for Turtlecar-Test specif-
ically, since the effort is considered too high while offering no significant advan-
tage in terms of comprehensibility. Even so, in the future, there could be an
extension to Turtlecar-Test that allows for the generation of test cases for the
testbed from logical formulas generated by TSCs.

11.2 Architecture

Figure 11.2 depicts the simplified architecture of TurtleCar-Test. TurtleCar-Test
introduces two main features for writing and executing tests: the Trigger-System
(see subsection 11.2.1) and a Simulated Driver (see subsection 11.2.2). The
Trigger-System receives information from the Gazebo simulation and executes
specified actions when specified conditions are met. The Simulated Driver acts
as a human driver would and has control over steering, throttle, and toggling
automated driving functions. The Trigger-System and the Simulated Driver in
collaboration ensure that the dynamic behavior can be defined in a way that the
test requires. Those two features are further explained in the following sections.

11.2.1 Trigger-System

The Trigger-System evaluates data coming from the Gazebo simulation system.
It contains an internal state for formulating complex testing conditions. The
system’s structure is visualized in Figure 11.3

The Trigger-System evaluates Gazebo data based on user-generated Triggers.
When writing the testing specification, the programmer can formulate testing
conditions and their resulting actions in the form of those Triggers. A Trigger
is made up of three components:

1. state (optional)

2. condition

3. action

The Trigger-System first checks if the Trigger has a required state. If so, it
is compared to the current state of the system and only if it matches will the
following condition be evaluated. Checking the condition is based solely on the
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Test End

IN_STATE
ONCE

Trigger-System

EXECUTE

Actuator Data

TurtleCar Core

Sensor Data

Bot

Test Result
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between

commands)

Frequently
(a few miliseconds in
between commands)

Simulated
Driver

Sensor DataDriver's Action

Change of Driving Strategy

Gazebo

Position Data of all Objects

Simulates

State Change

Simulates
ROS Data

Figure 11.2: Architecture of TurtleCar-Test

data given to the Trigger-System by Gazebo. This way, it is decoupled from
TurtleCar-Core’s internal state. If TurtleCar-Core behaves in an unexpected
way - e. g. by outputting the wrong velocity values - the test-outcome is still
based on the observed behavior of the TurtleBot.

The condition is a boolean condition that can be formulated with the helper
methods provided by TurtleCar-Test. Conditions allow checking positional and
temporal constraints, as well as other aspects of the robot under test. That
includes but is not limited to conditions over

• the absolute position,

• the velocity,

• the steering angle,

• the activated driving functions,

• the time elapsed between certain points in the test procedure,

• the distance to other objects or actors, and

• the position in relation to other objects or actors.
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Figure 11.3: Structure of the Trigger-System

If the condition holds, the Trigger’s action is executed. This action either
changes the state, outputs a test result or changes the driving strategy of a bot.
The Triggers can be grouped by the type of action they Trigger.

11.2.2 Simulated Driver

The Simulated Driver has access to the same controls that a human behind the
steering wheel of a car has. It can control acceleration, steering, and toggle
autonomous driving functions.

As part of the Testbed, this module takes care of keeping a set speed when
no cruise-control system is active. It can be adjusted by the Trigger-System by
way of a DrivingFunctionChange or a SimulatedDriverSettingsChange.

11.2.3 Gazebo integration

The testbed relies heavily on Gazebo for providing the simulation environment
and the positional data of each object within the simulation to evaluate condi-
tions against. The Gazebo simulation system is started at the start of each test
and shut down after its completion. During the test, it provides the positional
data via the ROS topic /tf. Data provided by this topic is absolute and has no
inaccuracies, unlike the simulated sensors that the simulated robots possess.

11.3 Defining Test Cases

A test describes a scenario with its desired outcome. Optionally, a series of in-
between states can be included for more complex tests. To define a test case, one
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must be able to define an environment, an actor that acts on the environment
and at least one criterion to be checked for.

TurtleCar-Test defines the environment via a gazebo map representing an
empty road in the form of a .world-file and a custom .areas-file holding co-
ordinates and ids of areas occupied by lanes, obstacles, road signs, and other
relevant locations within the world.

As an actor, the robot model with its available hardware needs to be defined.
This is done via the model’s .sdf-file. Furthermore, every actor needs a unique
ID and namespace to communicate with its instance of TurtleCar-Core. It also
needs a starting state, including its pose (x, y, z and rotation), velocity, and
active driving functions. An agent’s state can change over time; It can accelerate
or (de-)activate a driving function, for instance. TurtleCar-Test allows this
behavior by defining a driving strategy for an actor through a Trigger.

A criterion to be checked for can be defined by formulating a Trigger. This
criterion-Trigger defines when to give what test result. To simplify, this can
state that if two cars crash, then the test results in an error.

To fully define and execute a test case, the following steps have to be taken:

1. Description of the environment.

2. Description of robot(s).

3. Declaration of relevant areas.

4. Definition of Trigger.

5. Start of the test.

11.4 State Machines

State machines can be used to separate different parts of a test scenario. They
can be used to limit which conditions are tested for in different parts of the
test. A state machine can be specified in the test scenario specification file.
It requires a list of states and a starting state as parameters. Every Trigger
can include an optional check for the current state of a state machine. Such
a Trigger’s condition will not be checked until the expected state is reached.
The state machine can be put into the following state or a specific state in a
Trigger-Action.

11.5 Timers

A timer can be specified in the test scenario specification file. It can be started,
stopped, and reset as the action of a Trigger. The current amount of time passed
can also be used as a condition in a Trigger.

11.6 Implementation of TurtleCar-Test

The implementation is straightforward and aligns with the description of the
functions given above. The startup procedure is shown as an activity diagram
in Figure 11.4. It begins by starting its own ROS node for publishing and
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subscribing to topics. This is used for the communication between robot, simu-
lation, and TurtleCar-Test itself. It additionally starts the TransformListener,
which specifically subscribes to the messages sent by Gazebo via the aforemen-
tioned tf topic containing information about the pose of the objects in the
simulation, to obtain the position data of all simulated objects. Afterwards,
the processes necessary to conduct the tests are started in the order given in
the diagram. The visualization components are only started if the user sets the
corresponding flag when starting the testbed.

Parses Scenario File

Starts own ROS Node

Starts Transform Listener

Starts Gazebo Server

Starts Gazebo Client

Spawns ego TurtleBot

Spawns Other TurtleBots

Spawns Visual Areas

Creates Time Subscriber

Runs

[visualization]

[no visualization]

[visualization]

[no visualization]

Figure 11.4: Activity diagram of the startup of TurtleCar-Test

After startup, TurtleCar-Test loops through every Trigger and checks their
state and the condition. If both are true, the associated action is executed. The
action can range anywhere from a small adjustment in the SimulatedDriver
to ending the test with a success or a failure outcome. The state associated
with a Trigger is only re-checked when said state changes, while the Trigger-
condition is checked every simulation tick. Once a Trigger’s action is executed,
the Trigger will be discarded. If the action of a Trigger is a TestOutcome, then
the testbed will stop the Gazebo and TurtleCar-Core processes, and exit with
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a return message and a corresponding exit code.

11.6.1 Calculating Velocities from Gazebo Pose Data

The Gazebo simulation only sends information about poses. To obtain veloci-
ties, the TransformListener calculates the velocity of a bot from the distance
the bot traveled between the last two simulation steps. When the time between
the steps is too small, this can result in wrongly calculating very high veloci-
ties. To avoid this problem, the velocity is only recalculated after at least one
second.
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Chapter 12

Architectural Concepts

In order to implement the various driving assistance function in such a way that
they can be combined as would be the case in a real car, there is a need for an
architecture that supports this. In this section, several architectural concepts are
described that form the basis of implementing the individual driving functions.
First, a structure is introduced that binds individual driving functions together
to form the autonomy levels described in section 1.1. Afterwards, the usage of
model predictive control (MPC) within this project is described, which is used
to implement certain driving functions.

12.1 Autonomy Level Architecture

This section describes two use cases which are derived from the vision (see sec-
tion 1.1). The first use case combines the autonomy levels “no autonomy”
and “partially automated”, while the second organizes the driving functions for
highly autonomous driving.

12.1.1 Manual Driving and Partial Autonomy

This section describes the usage of the first two autonomy levels, Manual driving
and partial autonomy, since they are closely related and implemented in one
consistent architecture. The general principle is that the vehicle always starts in
manual driving mode. Afterwards the human driver has the ability to manually
activate assistance functions or deactivate them again. The inputs that can
be given by the driver are shown in Table 12.1. The table shows the input
mappings for keyboard and gamepad. Additionally, the inputs can be given via
ROS parameters for automatic testing.

The interplay of the manual and assisted driving functions can be modeled
as a pipeline. The architecture is described in Figure 12.1. The supervisor
module contains an ordered list of control modules for driving functions which
can be turned on or off. Each iteration of the control loop, it first asks the
manual control function (described in section 13.1) for its input. Afterwards,
each controller in the ordered list that is switched on is asked for its input.
Each controller writes its output directly to the Action interface. The next
controller therefore has the possibility of overriding or altering input from the
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Table 12.1: The keyboard and gamepad inputs for a human driver.

Function Key XBOX
Gamepad

ROS Parameter

Increase Ve-
locity

W Press Right
Trigger

user_input_target_speed

Decrease Ve-
locity

S Release
Right Trig-
ger

user_input_target_speed

Steer Left A B user_input_steering_angle

Steer Right D X user_input_steering_angle

Toggle Lane
Keeping

K Y user_input_toggle_lka

Emergency
Stop

Space Left/Right
Shoulder
Button

No parameter, send a message of
type Twist with all zero values to
topic \cmd_vel

previous controller. Some controllers may contain a planner which writes its
planned path to the Plan interface. This may also be overridden by a subsequent
controller. To avoid confusion, only one controller should therefore be allowed
to develop a plan. In the future, this may be replaced by a using global planner,
which develops a plan for all driving functions or by integrating multiple driving
functions into one unit. Therefore, the pipeline architecture described here is
subject to change. Currently, the pipeline consists of the following controllers
in this order:

1. Manual Control

2. Lane Keeping Assistant

These controllers are described in detail in the following sections.

12.2 Model Predictive Control

In this project group, the aim is to build driving functions which enable solving
different scenarios. In order to achieve this in a way that consistently provides
good results, a two-layered approach for the control strategy was chosen. A
planner calculates a trajectory and boundary conditions, which are then used
by a model predictive control to derive the best possible solution. This approach
is heavily based on the work of Wunderli [49] and of Kröger [29], who used model
predictive control to achieve optimal tracking of a given trajectory with a model
racing car. The approach is almost directly transferable as the model it uses is
the same bicycle model used in the project group, as defined in section 4.1. This
section aims to give an overview and guidelines on how new driving functions can
be implemented by designing a problem consisting of a trajectory and boundary
conditions which can then be solved by the model predictive control, resulting
in optimal control signals. First, an overview over the Model Predictive Control
approach used in this project group is given. This also includes information on
where the project group deviated from the approaches described by Wunderli
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writewrite write

execute

Figure 12.1: Interplay of supervisor and controllers for the individual driving
functions.

and Kröger. Afterwards, an architecture is described which incorporates the
model predictive control and implementation guidelines are given.

12.2.1 The Model Predictive Control Algorithm

Wunderli describes how to model the trajectory tracking problem as a quadratic
problem which can be solved by existing solvers. Kröger deviates from Wun-
derli’s original approach in some ways. These deviations were incorporated in
this project group. It is assumed that a trajectory is given which can be tracked.
The trajectory has the form

x⃗n(t) =


vn(t)
ψn(t)
xn(t)
yn(t)


where for each point in time t the nominal state xn(t) is completely defined.
Additionally, for each point in time, the current trajectory curvature κn is de-
fined. Instructions on how to derive such a trajectory are given below. Using
this nominal trajectory and the dynamics of the bicycle model, a model of the
error dynamics, i.e., of the deviations between the nominal and the actual tra-
jectory can be derived. This model is linearized around ψe = 0, ve = 0 while
approximating cos(ve) = 1 and ve sin(ve) = 0. The linearized error dynamics
are then described by

ẋe =


v̇e
ψ̇e

ẋe
ẏe

 =


a− an
ω − ωn

ve + ωnye
vnψe − ωnxe
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with ω = v
Lδ and ωn = vnκn. When discretized with time constant T , the error

dynamics are defined by

xe,k+1 = Ak · xe,k +B ·
(
ak
ωk

)
+ Ck (12.1)

where

Ak =


1 0 0 0
0 1 0 0
T 0 1 Tωn,k

0 Tvn,k −Tωn,k 1

 , Bk =


T 0
0 T
0 0
0 0

 , Ck =


Tan,k
Tωn,k

0
0


(12.2)

In order to obtain the optimal control signals which minimize the error be-
tween the actual and nominal state for N time steps, the following optimization
problem is defined:

min
u

N∑
k=0


ve,k
ψe,k

xe,k
ye,k


T

Qk


ve,k
ψe,k

xe,k
ye,k

+

N−1∑
k=0

(
ak
ωk

)T

Rk

(
ak
ωk

)
(12.3)

Qk ∈ R4×4 is the weighing matrix for the error states and Rk ∈ R2×2 is the
weighting matrix for the inputs. They contain constants on their diagonal which
weigh the respective input and state variables. They can change each step, but
in the simplest case they stay the same. Note that the weights for the velocity
and the position should not be chosen to be the same, since the focus for the
cost function needs to be set on either one. This optimization problem needs to
be subject to the following constraints:

Error Dynamics The optimization must be conducted along the dynamics
of the system, so per Equation 12.1 and the following condition must be met:

∀k ∈ [0, N − 1] :


ve,k+1

ψe,k+1

xe,k+1

ye,k+1

 = Ak


ve,k
ψe,k

xe,k
ye,k

+Bk

(
ak
ωk

)
+ Ck (12.4)

with Ak, Bk and Ck defined by Equation 12.2.

Maximum Steering Angle The steering angle of a car is limited. Since not
the steering angle itself, but the input ω = v

Lδ is used, the constraint on the
steering angle is

∀k ∈ [0, N − 1] :
v

L
δmin ≤ ω ≤ v

L
δmax (12.5)

Maximum Longitudinal Acceleration Because of restrictions on the ve-
hicle’s abilities, the acceleration must be constrained:

∀k ∈ [0, N − 1] : amin ≤ ak ≤ amax (12.6)

70



Maximum Lateral Acceleration For passenger convenience, the lateral ac-
celeration q = vω should not exceed a certain value. Because vω can not be
expressed in a linear MPC, it is assumed that v ≈ vn. Therefore the constraint
is formulated as

∀k ∈ [0, N − 1] : vnωk ≤ qmax (12.7)

.

Position Constraints The space on which the car may drive is limited by
several factors, i. e. the lane and road boundaries or obstacles. For now only
lateral position constraints based on y are considered, but in principle obstacles
could also be modeled by using constraints on x:

∀k ∈ [0, N ] : yk,min ≤ yk ≤ yk,max (12.8)

. For reasons of simplicity, the relaxation strategy implemented by Kroeger was
not adopted in this project group. This may be subject to change if the MPC
regularly fails to find a solution under the given constraints.

12.2.2 Implementation

The model predictive control is implemented by building the optimization prob-
lem from a given trajectory and given position constraints and solving it using
a suitable solver for quadratic problems. In this project group, the Gurobi
solver is used as it has been successfully used for similar problems previously
(see [29], [7]). In contrast to Matlab, which also provides functions for solving
optimization problems (see [33]), Gurobi can be used via a Python interface
(see [21]) which makes it possible to quickly integrate it into the existing archi-
tecture.

Driving functions need to provide a plan and position constraints in a stan-
dardized format to the component building the optimization. The architecture
is depicted in Figure 12.2. It shows how a driving function can obtain opti-
mal control signals through a standardized interface by providing a trajectory
and constraints to a problem builder component. The problem builder gener-
ates the optimization problem as described above and communicates with the
Gurobi solver to generate a series of optimal control signals, the first of which
is handed back to the driving function.

12.2.3 Implementation Roadmap

In order to implement this system, the following steps must be taken:

1. Obtain a Gurobi License and install Gurobi on the developer’s computer

2. Create a minimal working example with a simple trajectory and boundary
conditions and the optimization problem described above

3. Test the minimal example with the simulated TurtleBot

4. Install Gurobi on the TurtleBot

5. Test the minimal example on the real TurtleBot
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Driving Function
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Gurobi

Sensor Information Control Action

Trajectory Constraints
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Control Action

Figure 12.2: The architecture for intergrating model predictive control in Turtle-
Car by providing a problem builder as interface between driving function and
optimizer.

6. Create an interface for the controller as described in Figure 12.2

7. Create a minimal controller using the interface to obtain signals from the
MPC and test it in simulation and reality

Afterward, the resulting MPC interface can be used by various driving func-
tions, such as the Lane Change Assistant or Obstacle Avoidance. In order to
implement these, driving strategies and decision algorithms for choosing the
correct strategies for the current situation must be implemented which create
trajectories and constraints to use with the MPC.
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Chapter 13

Driving Functions

In this section, the driving functions implemented by the project group are
documented. These are used within the architecture described in chapter 12.
For each driving function, the definition of the requirements, the controllers used
to implement the driving function, and the validation are described. Some of
these driving functions can’t be active at the same time, as the controllers may
provide conflicting control inputs. These conflicts are covered in section 13.8

13.1 Manual Driving

The manual driving controller controls the vehicle conforming solely to the
driver’s inputs. Since the focus of the project group is the development of
autonomous driving function and not a realistic mapping of controls of a real
vehicle, the user input is simplified. It consists of two inputs: A target velocity
and a steering wheel angle. The manual driving controller gives these inputs
directly to the Action interface. This means that the steering angle is set to
be exactly the steering wheel angle given by the driver and the target velocity
of the vehicle is set to be exactly the target velocity given by the driver. These
values are then used by the Transposer to drive the vehicle accordingly. It
is necessary to mention that the Transposer acts as a very aggressive cruise
control with maximum acceleration and deceleration. In order to enable more
realistic and smoother driving, the input of the driver or the vehicle model needs
to be changed.

13.2 Lane Keeping Assistant

The Lane Keeping Assistant driving function should assure that the vehicle
keeps in its lane. In Figure 13.1 the ego vehicle is located on the middle lane
and driving. In a scenario with the LKA activated the vehicle should keep the
same distance to the lane markings on each side - so it should drive centered in
the lane it starts in.

The requirements of the Lane Keeping Assistant are based on the ISO stan-
dard 11270 [23], but do not yet cover all aspects. These requirements are subject
to rework.
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Figure 13.1: Lane Keeping Assistant scenario

13.2.1 General Requirements

• The LKA must be able to be switched on or off

– The LKA can be toggled by user input

– The LKA can be switched on by startup flag

• The robot must identify the lane its on and its center

• The LKA must be disabled when the lane change disabling condition ac-
cording to the ALKS regulation is fulfilled

• The LKA enabled vehicle should never cross lane borders

• The robot should follow the lane’s center

• The controller should be based on model prediction

13.2.2 Functional Requirements

Requirement LKA.1

GIVEN

• The vehicle is running

WHEN

• The input to enable the Lane Keeping Assistant is given

THEN

• The Lane Keeping Assistant is enabled

Requirement LKA.2

GIVEN

• The robot starts inside of lane boundaries
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• The initial velocity is 0, the initial acceleration is 0, the initial steering
angle is 0

• The robot heading fulfills the following criteria:

– If the robot is left of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2° toward the right lane boundary.

– If the robot is right of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2° toward the left lane boundary.

WHEN

• A target velocity greater than 0 is given by a human driver

• A steering wheel angle smaller than a threshold ω is given by the driver

• The Lane Keeping Assistant is enabled by the driver

THEN

• The LKA engages

• The robot identifies the lane it is on

• The robot accelerates to the speed defined by the human driver and main-
tains this speed

• The robot follows the center of the lane

• The robot never crosses lane borders

• The steering angle is always within the vehicle’s specifications

Requirement LKA.3

GIVEN

• The robot is driving with arbitrary speed, arbitrary acceleration

• The Lane Keeping Assistant is active

• The steering angle is arbitrary within the vehicle’s specification

• Initially there is no steering input from the user

WHEN

• A steering wheel angle greater than a threshold ω is given by the driver

THEN

• The LKA disengages

• The steering angle of the vehicle is the same as the steering wheel angle
given by the driver
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Requirement LKA.4

GIVEN

• The robot is driving with arbitrary speed, arbitrary acceleration

• The Lane Keeping Assistant is enabled

• The steering wheel angle given by the user is greater than a threshold ω

• The LKA is disengaged

WHEN

• A steering wheel angle smaller or equal to a threshold ω is given by the
driver

THEN

• The LKA engages

Requirement LKA.5

GIVEN

• The LKA is enabled

WHEN

• The user input to disable the LKA is given

THEN

• The Lane Keeping Assistant is disabled

13.2.3 Non-Functional Requirements

LKA.A

The controller for the Lane Keeping Assistant is based on model prediction.

13.2.4 Additional Information

Overruling the LKA How an LKA can be overruled by the user differs
depending on car manufacturer, model and available sensors and actuators in the
car. In the manual for the EV6, KIA Motors describe that turning the steering
wheel over a certain degree deactivates the Lane Keeping Assistant [26]. The
deactivation criteria of the Lane Keeping Assist systems developed by Bosch
depend on the availability of power steering: When available, the Lane Keeping
Assistant actively turns the steering wheel and can therefore be overruled by the
driver using enough force. [40]). Since the TurtleCar system does not contain
force feedback inputs and adding support for these is out of scope for this project
group, this is not possible to implement. In order to demonstrate temporary
overruling for a lane change, the steering wheel angle threshold ω is defined.
It was determined experimentally that setting ω to 1.7 degrees yields suitable
results.
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Determining the suitable initial conditions The maximum possible ori-
entation is based on the most narrow curve that a car with the wheel base length
and the maximum steering angle of a VW Golf. When in the center of the lane,
the greatest angle it can recover from is 40.2°. This can be computed as follows:

• a: maximum steering angle (40°for VW Golf)

• w: wheelbase length (2.6365m for VW Golf)

• r: radius of turning circle

• r = w
tan(a)

Since the outer set of wheels on the car is of interest when determining the
size of the circle driven by the vehicle, half of the golf’s width is added to the
to the radius:

rgolf = r + 0.9

The maximum recovery angle based on that radius was determined graph-
ically as shown in Figure 13.2. When placing a circle with radius of rgolf so
that it touches the lane boundary, it represents the path that a vehicle would
take in the most extreme, still manageable case. The tangent of the circle at
the intersection of the center of the lane shows the orientation of the car in
this extreme case when placed at the lane center. When at the left of the lane
center, the car is therefore able to recover from orientations of 53.6° to the right
or lower. The same goes for the situation that the car is right of the center
and faces left. With a safety margin of 25%, this results in a maximum allowed
orientation of 40.2°.

Figure 13.2: Graphical representation of the maximum heading pointing out of
the lane that a car can recover from

13.2.5 Implementation

For the implementation, a controller based on the bicycle model is used. Since
the bicycle model is a nonlinear differential equation, it is linearized in order to
obtain a linear controller.
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Figure 13.3: A graphical representation of the state variables used for the con-
troller of the lane keeping assistant. Y and θ are always relative to the next
point provided by the path planner.

Controller Model Since the Lane Keeping Assistant does not control the ac-
celeration but only the steering angle, the velocity of the vehicle can be regarded
as a parameter of the system. Therefore the bicycle model defined in section 4.1
can be reduced to the simplified version

ẋ1 = Ẏ = v · sin(x2)

ẋ2 = θ̇ =
v

l
· tan(u2)

where X is the position in the linear direction of the car, Y the lateral
position, and θ the heading. These are all relative to the next point that the
path planner provides. A depiction of the meaning of Y and θ can be seen
in Figure 13.3.

This allows for a simpler linearization. The operating point to linearize
around is x = 0 and u = 0. This represents the state where the vehicle is
exactly on the line that has to be followed, and assumes that the controller only
needs to make small corrections.

With that the system is linearized:

ẋ(t) = f(x, u) = Ax+Bu ≈ f(0, 0) +
∂f

∂x

∣∣∣u=0
x=0

· x+
∂f

∂u

∣∣∣u=0
x=0

· u

=

[
0
0

]
+

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2s

] ∣∣∣∣∣u=0
x=0

· x+

[
∂f1
∂u1
∂f2
∂u1

] ∣∣∣∣∣u=0
x=0

· u

=

[
0 v cos(x2)
0 0

] ∣∣∣∣∣
x=0

· x+

[
0
v

l·cos2(u)

] ∣∣∣∣∣
u=0

· u

=

[
0 v
0 0

]
· x+

[
0
v
l

]
· u

The state feedback control law u = −[k1 k2] · x is used to design the controller.
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This results in the closed-loop function:

fcl =

[
0 v
0 0

]
· x+

[
0
v
l

]
· (−[k1 k2] · x) =

[
0 v
0 −v

l ∗ k2

]
·
[
x1
x2

]
From the closed loop function it can be seen that k1 can remain undeter-

mined, as the lateral position has no direct influence on the control input. Now
the operating domain for the velocity the Lane Keeping Assistant should be
stable in has to be chosen. For this v ∈ (0, 34] m/s was chosen, which is (0, 120]
km/h .

Using Matlab the characteristic polynomial for which all eigenvalues have
real parts strictly less than 2 was determined. With the coefficients, it is possible
to solve for values of k2 which hold the closed loop system in a stable domain.
For this, the parameter space was sampled with a step size of 0.5. Since the
system is uncontrollable for v = 0, sampling started at 0.5. This resulted in
values for k2 ∈ [0.05, 1.4].

This enabled building a stable controller for the Lane Keeping Assistant.
From the domain of stable values for k2, choosing k2 = l

v has been determined
experimentally to yield the best results for any speed v.

13.3 Adaptive Cruise Control

The Adaptive Cruise Control function should assure that a vehicle keeps a safety
margin to a vehicle in front of it. In Figure 13.4 the ego vehicle is located on the
middle lane and driving. In front of the ego vehicle is another vehicle, driving
at least as fast as the ego vehicle. The distance between both vehicles is at least
the safety margin distance at all times.

Figure 13.4: Adaptive Cruise Control scenario

13.3.1 General Requirements

• The vehicle must be able to activate/deactivate Adaptive Cruise control
depending on the drivers wishes

– The ACC must be deactivated if the driver takes manual control

• The vehicle must keep at least a minimum safe distance including a suit-
able error margin
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– The vehicle should keep the same speed as the front vehicle

– The vehicle must be able to reduce its speed to keep the minimum
safe distance

– The vehicle should be able to increase its speed to keep the distance
to front vehicle

• The driver can issue a command to drive at a certain speed overriding the
ACC

• The ACC must be disabled if the driver issues a brake command

• The ACC controller should be build using model prediction

Definition: Minimum Safe Distance To be defined according to relevant
regulations: Minimum safe distance which a following vehicle needs to maintain
in order to be able to decelerate if the leading vehicle brakes (with bounds for
deceleration)

In the German traffic regulations, a rule of thumb to determine the distance
between two vehicles considered safe is described: The vehicle needs to keep a
distance of at least half of the current speed (kilometers per hour) in meters [12,
§2 Abs. 3a S. 2a].

13.3.2 Functional Requirements

Requirement ACC.1

GIVEN

• The ego vehicle is driving behind another vehicle. Both vehicles have arbi-
trary speed and the ego vehicle maintains at least minimum safe distance
to the leading vehicle.

WHEN

• The driver triggers the switch for the adaptive cruise control

THEN

• The Adaptive Cruise Control is enabled

Requirement ACC.2

GIVEN

• The vehicle is driving behind another vehicle with arbitrary speed vi with
at least minimum safe distance including error margin

WHEN

• The adaptive cruise control is enabled

THEN
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• The ego vehicle drives at most with velocity vi

• The ego vehicle accelerates or brakes within the velocity bounds so that
it maintains at least a minimum safe distance including error margin to
the leading vehicle

Requirement ACC.3

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle brakes to velocity vb

THEN

• The ego vehicle drives at most with velocity vb

• The ego vehicle decelerates to velocity vb and maintains at least a mini-
mum safe distance without error margin at all times

Requirement ACC.4

GIVEN

• The adaptive cruise control is enabled

• The leading vehicle is driving with velocity vi

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has a a distance to the leading vehicle that is smaller than the minimum
safe distance including error margin

• The driver does not give a command to accelerate to a speed greater than
vi

WHEN

• No Action

THEN

• The ego vehicle drives at most with velocity vi

• The ego vehicle decelerates to until it maintains at least a minimum safe
distance including error margin

81



Requirement ACC.5

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle accelerates to velocity va

THEN

• The ego vehicle drives at most with the minimum vm of velocities vi and
va

• The ego vehicle accelerates to velocity vm and maintains at least a mini-
mum safe distance with error margin at all times

Requirement ACC.6

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The driver continuously issues a command to drive with velocity vt

THEN

• The ego vehicle accelerates to velocity vt without regard for the minimal
safe distance

Requirement ACC.7

GIVEN

• The adaptive cruise control is enabled

WHEN

• The relevant user input is received

THEN

• The adaptive cruise control is disabled

• The vehicle drives according to the driver’s commands only
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Requirement ACC.8

GIVEN

• The adaptive cruise control is enabled

WHEN

• The driver issues a braking command

THEN

• The adaptive cruise control is disabled

• The vehicle drives according to the driver’s commands only

13.3.3 Non-Functional Requirements

ACC.A

The controller for the lane keeping assistant is based on model prediction.

13.3.4 Implementation

For the implementation, the approach described by Zhenhai et al. [50] is used.
The function of the Adaptive Cruise Control is based on a switching strategy
between two modes: In Cruise mode the vehicle simply keeps a given speed. In
Follow mode the vehicle maintains a constant distance to the preceding vehicle
and matches its speed if it is lower than the speed defined by the driver. The
control law in each mode defines the acceleration a. For the description of the
controllers, the following variables are used:

• v is the speed of the ego vehicle

• vd is the target speed for the cruise control

• vp is the speed of the preceding vehicle

• ∆v = vp − v is the relative speed of the two vehicles

• ∆d = d − dmin(∆v) is the distance of the ego vehicle to the closest safe
point behind the preceding vehicle based on their relative speed

• afollow is the target acceleration calculated by the follow mode algorithm

• acruise is the target acceleration calculated by the cruise mode algorithm

• doffset is a parameter to define the offset between the zones where Follow
mode and Cruise mode are applied

The control laws in each mode are described in Table 13.1. The constants
kp, ki, kv and kd are selected so that the vehicle is able to achieve the desired
state quickly, but without creating too much jerk in its movements. The chosen
values are shown in table XYZ.
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Table 13.1: The control laws of the Adaptive Cruise Control.

Control Law

Cruise Mode acruise = kp(vd − v) + ki
∫
(vd − v)dt

Follow Mode afollow = kv∆v + kd∆d

Table 13.2: The zone-based switching strategy from [50]

Distance Velocity Acceleration Resulting Control Mode

∆d ≤ 0 ∆v ≤ 0 - Follow Mode
∆d > 0 ∆v < 0 afollow ≤ acruise Follow Mode
∆d > 0 ∆v < 0 afollow > acruise Cruise Mode
∆d < doffset ∆v > 0 afollow ≤ acruise Follow Mode
∆d < doffset ∆v > 0 afollow > acruise Cruise Mode
∆d ≥ doffset ∆v ≥ 0 - Cruise Mode

Each time a control signal needs to be generated, the controller first checks
which mode should currently be applied. It then chooses the corresponding
control law. This switching strategy is taken from [50] and is based on dividing
the parameter space into zones in which the different control laws apply. This
division is given by distance, velocity and acceleration. This method ensures
that switching between modes is conducted smoothly. In favor of brevity, only
the switching table is documented here without reasoning about the parameter
zones. It is shown in Table 13.2. The table describes the conditions on distance,
velocity and acceleration and defines the control mode that should be applied
in each case. A

”
-“ means that the respective parameter does not factor in the

decision in this case.

13.4 Lane Change Assistant

The Lane Change Assistant driving function should assure that the vehicle can
safely change lanes. In Figure 13.5 the ego vehicle is located on the middle lane
and driving. In a scenario with the LCA activated the vehicle should at some
point in time drive on the left lane — having performed a lane change.

Figure 13.5: Lane Change Assistant scenario
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13.5 Obstacle Avoidance

The Obstacle Avoidance driving function should assure that the vehicle avoids
obstacles by stopping or changing lanes. In Figure 13.6 the ego vehicle is located
on the middle lane and driving. In front of it — in a safe distance — there is an
obstacle. In a scenario with the Obstacle Avoidance driving function activated,
this distance is being kept and a lane change performed. The ego vehicle changes
back to the middle lane at some point so that a safe distance from the obstacle
is assured.

Figure 13.6: Obstacle Avoidance scenario

13.6 Overtaking

The Overtaking driving function should assure a safe overtaking maneuver when
a moving vehicle is ahead. In Figure 13.7 the ego vehicle is located on the
middle lane and driving. In front of the ego vehicle is another vehicle driving.
The distance between both vehicles is at least the safety margin distance. In a
scenario with the Overtaking driving function activated, this distance is being
kept and a lane change performed. The ego vehicle changes back to the middle
lane at some point so that a safe distance from the other vehicle is assured.

Figure 13.7: Overtaking scenario
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13.7 Platooning

The Platooning driving function should assure that a convoy-like formation is
created and kept. In Figure 13.8 the ego vehicle is located on the middle lane and
driving. Behind it is another vehicle and behind that another. All the vehicle
keep the same distance from each other that is within a predefined range.

Figure 13.8: Platooning scenario

13.8 Constraints on Driving Function

Multiple driving functions are generally unable to be activated at the same time,
because of conflicting control inputs. For example, the LKA wants to keep to
the center of its current lane, while a LCA wants to move from the current lane
to another. This section describes constraints on the simultaneous activation of
driving functions. Since there are conceptual differences between an approach
based on model predictive control and approaches that aren’t based on MPC a
distinction between these is made.

13.8.1 Classic Approach

Based on the implementations for different driving function, it is apparent which
control inputs a given controller calculates. These inputs are then used to control
the TurtleBot. This information provides a way to establish which driving
functions can’t be active simultaneously. Using this approach first results can
be seen in Table 13.3. The + symbolizes that the functions can be used together,
while the - symbolizes that they cannot. The black boxes means that they are
the same function.

It is apparent, that most driving functions can’t be used at the same time.
An exception to this is the ACC which can be used in conjunction with one of
the other functions that don’t generate an input for accelaration.

However, this does not show the whole picture, as some driving functions
behave similarly to others, like Overtaking and Obstacle Avoidance. At their
core, these functions make the vehicle change the lane to drive past another
object. In the case of Overtaking this object is also moving, while for Obstacle
Avoidance it remains stationary. Additionally, both functions make the vehicle
change back to its original lane after avoiding an obstacle. This behavior can
be compared to using the LCA twice.
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Table 13.3: Driving functions that can be active simultaneously

Driving
Function

LKA ACC LCA CAS Overtaking

LKA + - - -
ACC + + + -
LCA - + - -
CAS - + - -
Overtaking - - - -

The fully autonomous TurtleBot has to drive in a safe way, which implicitly
establishes a hierarchy for the driving functions. The TurtleBot should use the
Obstacle Avoidance or Overtaking driving function if there is an impending
collision with another object, rather than using the ACC or LKA.

Platooning behaves a bit differently here because the leader of the platoon
(the ego vehicle) is set to act using possibly all other driving functions, while
the platoon members should just mimic the ego vehicle’s actions and not use
the functions themselves. This way the members aren’t involved in planning
actions, but just in the perception of fellow members and looking out for possible
collisions with non-platoon objects.

13.8.2 MPC Approach

The MPC consists of two layers. First, there is a path planner and second, there
is a path follower. Every function can be implemented using either layer, with
different degrees of complexity. This changes how driving functions interact
with each other. For example, the Obstacle Avoidance function can define the
constraints for a trajectory to forbid

”
driving through“ an obstacle. This forces

the path follower to drive around the obstacle automatically if the trajectory is
still feasible. The other option is to replan the trajectory around the obstacle.
This would mean that the main function of the Obstacle Avoidance is done in
the planning layer. These ideas are the same for Overtaking.

The LKA and ACC only generate one control input, either steering angle or
acceleration. This is different from what the MPC approach expects. It needs
both inputs at all times. This leaves two options: Keep the LKA and ACC in
their existing implementation and not use them in the MPC context. The other
option is to rework both functions such that they also generate the missing input
parameter in some way. This consideration has not yet been made; The status
quo is the former option.

Another caveat for the ACC if approached in an MPC context, is that it
requires constant monitoring of the lead vehicle. The acceleration of the ego
vehicle based on the lead’s vehicle speed and acceleration as well as the distance
between the two should be able to change often. This results in a constant
updates for the MPC, which is not something that should be done in the MPC
approach.

If the Obstacle Avoidance and Overtaking function are realized in the fol-
lower layer then it can’t be done using the LCA function to change the lane
once to avoid the obstacle and once to change back to the original lane. The

87



LCA has to be implemented in the planner layer, as it is not just a temporary
lane change like for avoiding obstacles, but a permanent change in the trajec-
tory. This is different from the classic approach, as allowing the Overtaking and
Obstacle Avoidance functions to use the LCA to implement their behaviour is
an applicable solution. If the Obstacle Avoidance and Overtaking features are
implemented in the planner and LCA, it is impossible to use them in conjunc-
tion. They would plan different trajectories resulting in a conflict. Generally it
can be said that driving functions themselves can’t be used simultaneously for
planning a trajectory. This has to be done by a single component, however it
is possible to represent another driving function with constraints for the MPC.
This specific edge case can be seen as multiple driving functions working simul-
taneously. Otherwise it is benefitial to work on a strategy to find the optimal
driving function for a given situation. Based on this the chosen driving func-
tion would be able to plan its trajectory. Replanning would have to be done
if the developed strategy decides that the current state of the vehicle and its
environment demand it.
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Chapter 14

Organization

This section describes everything related to the internal organization of the
project group. A more detailed description on how the product vision will be
achieved is provided here.

14.1 Milestones and Timeline

In order to reach the project group’s goal, the following four milestones as listed
in Table 14.1 were defined in the beginning.

Table 14.1: Planned milestones

Milestone Start date End date
MS 1: Lane keeping assistant and funda-
mental architecture

05.05.2023 08.09.2023

MS 2: Adaptive cruise control and basic
testbed features

09.09.2023 28.09.2023

MS 3: Autonomy Features, Robot Vision 29.09.2023 22.12.2023
MS 4: Rogue actor and platooning 23.12.2023 07.03.2023

Furthermore, a more detailed time schedule depicted in Figure 14.1 was
offered initially. The thick vertical lines depict the end of a milestone. Addi-
tionally, the epic can be grouped together as follows: driving functions (green),
test framework (orange), obstacle avoidance (purple), platooning (blue), docu-
mentation (yellow), and higher-level (grey).

14.2 Sprint-flow

The previously defined milestones will be archived in an agile way using the
scrum process [43]. A sprint lasts three weeks and consists of the following
aspects:

• Feature-Planning (FP)
In this phase Product Owner (PO) and Business Engineer (BE) and all
interested parties consider which features should be developed in the future
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Figure 14.1: Gantt chart of epics

to reach the milestones. The features are recorded in Jira. Tickets are
created that contain the needed requirements.

• Implementation
During this period, the tickets are processed, documentation is written,
and reviews are performed by others so that they can finally be merged.

• Review
The goal of the review is to bring all stakeholders up to date. It should
be mentioned which goals have been achieved and the progress should be
presented.

• Retrospective
The team sits down internally at the retrospective at the end of the sprint
and draws a summary. The focus is on filtering out problems, exploring
possible solutions and citing positive aspects.

During the sprint, a weekly serves as an exchange with the stakeholders
by giving a quick presentation of last week’s progress. Internally, meetings
are scheduled twice a week. Once every sprint, a refinement of the backlog is
planned which is done to facilitate the feature planning and refine Jira tickets
to enable faster sprint plannings.

14.3 Sprint Workflow

To assure that all members follow the same workflow regarding the arising tasks
during a sprint, the following well-defined workflows have been agreed upon. For
example, every sprint follows a specific workflow. An overview is given in Fig-
ure 14.2, where every colored step (except the

”
Sprint planning“) resembles one

column in a Jira Sprint Board, as it is shown in Figure 14.3. First, the sprint
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has to be planned. Every ticket in the sprint is then assigned to one or more
people. When they have finished processing the ticket, it goes into review and
finally into acceptance by the PO or BE.

Figure 14.2: Overview of how the work on items in a sprint is done.

Figure 14.3: The states of an issue as represented in the Jira board.

Since some of these steps are complex in nature, it is important to clearly
define their respective workflows. This is done by the following diagrams, with
continued usage of the color coding as seen above. The

”
Sprint planning“ work-

flow is described in Figure 14.4. The activity
”
To-Do“ is empty, as this step

only consists of waiting for any ticket-related work to start, thus requiring no
well-defined workflow. The workflow described in Figure 14.5 shows how tickets
that are in progress should be worked on. The workflow for

”
To Review“ and

”
In Review“ is shown in Figure 14.6 and the workflow for finalizing a ticket is
described in Figure 14.7.
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Figure 14.4: Sprint planning workflow
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Figure 14.5: Work in Progress workflow
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Figure 14.6: To Review and In Review workflow
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Figure 14.7: In Acceptance workflow

14.4 Defintion of Done

A ticket is considered done if the following requirements are fulfilled:

• Functionality implemented

• Reproducibly tested

• Documented

• At least three persons were involved in implementation and review, at
least one of them is only a reviewer

• All acceptance criteria are met

• Accepted by PO or BE

14.5 Roles

The project group consists of eleven students. Each member is a developer, but
some also fulfill different roles or focus on certain topics. These roles with the
member’s names inside this project are listed below.

• Scrum Master (Carl Schneiders)

– Ensures conformity to scrum practices

– Maintains the team’s processes and takes care of removing obstacles
in the process
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– Organizes retrospectives.

• Product Owner (Marie Marken)

– Creates and maintains the product vision in consultation with the
group and other interested parties.

– Communicates with BTC ES, Foundations and Applications of Sys-
tems of Cyber-Physical-Systems and Distributed Control in Intercon-
nected Systems

– Maintains the backlog and organizes feature planning

– Leads sprint planning and sprint review

• Business Engineer (Lasse Heckelmann)

– Supports the Product Owner in her tasks

– Keeps track of the project

– Provides a point of contact for specialized questions

• Documentation Steward (Nellson Eilers)

– Keeps track of the internal wiki

– Makes sure that everyone documents their work

– Ensures that conventions regarding the documentation are adhered
to

• Infrastructure (Malte Grave)

– Maintains the server infrastructure

– Makes sure that everyone can work

– Also offers technical support

• Code Steward (Jan-Magnus Monenschein)

– Ensures that the code quality is of the desired level

– Specifies rules and principles for working on the code base

– Helps with all things CI/CD

– Helps with configuring and working with development tools

• Technical Lead (Simon Struck)

– Has an oversight over the whole system

– Responsible for creation/management of datatransfer protocols

– Evaluates technical feasibility

• Quality Analysis (Filip Wojciak)

– Ensures product functionality

– Tasked with testing of the product

– Ensures fulfillment of requirement
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• Developer (Julia Debkowski)

– Assists with software development

– Keeps track of the project’s progress

• Software Architect (Stefan Gerber)

– Maintains the architecture

– Is a contact for architectural questions

• PR work (Paulina Kowalska)

– Responsible for public work

– Responsible for planning events

14.6 Tools

For easier collaboration, using a few tools proved to be essential. Below, some
of these tools are presented.

14.6.1 Jira

Jira is a popular project management and issue tracking tool developed by At-
lassian. Jira helps to manage tasks efficiently, maintain transparency, adapt to
different project methodologies and collaborate effectively.
Jira allows teams to create, track, and manage issues, tasks, bugs, and user sto-
ries. This helps in maintaining a clear and organized list of work items, making
it easier to prioritize and address them. Also, Jira supports agile methodologies
like Scrum. It provides features such as sprint planning, backlog management,
and burndown charts to facilitate agile processes.
Furthermore, Jira is highly customizable. This enables the ability to have cus-
tom workflows, issue types, and fields to tailor it to a project’s specific needs.
Another important aspect is that Jira can integrate with a wide range of tools,
including source code repositories (i. e. Gitlab), CI/CD pipelines and more.

14.6.2 Discord

Discord is used for communication within the team. A custom bot called Hugo
is used, which partially automates processes. Particularly, he reminds the group
of the internal weekly deadline, helps with the estimation process of user stories
and can be used to list current merge requests and their review status.

14.6.3 Gitlab

Versioning is essential. Gitlab is used for this purpose. Repositories for the
following projects exist.

• the internal wiki

• the website

• everything related to public relations
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• the project report

• the server configuration

• and of course the TurtleCar implementation itself

14.6.4 Google Calendar

To keep track of important dates Google Calendar is used. Here all appoint-
ments as well as vacations are entered.

14.6.5 Etherpad

Etherpad is used to share notes and to keep the agenda for meetings.
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Chapter 15

Public Relations

In this section, the presentation to the public will be addressed. This will cover
tasks performed during participation in events like the FleiWa, as well as the
management of the project group’s online presence, including a website and
Instagram account.

15.1 Quartierstag

Figure 15.1: Presentation at the Quartierstag

At the
”
Alte Fleiwa“ neighborhood, as part of its 100th-anniversary celebration

the
”
Quartierstag“ was held. Here a first major milestone, the Lane Keeping
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Assistant, was presented. This can be seen in Figure 15.1. During this event,
local businesses, research institutions, organizations, and municipal offices pro-
vided insights into their work. More information can be found on the following
link: https://quartierstag.de/ On behalf of the University and BTC-ES,
current findings were presented, a live demonstration was offered, a poster as
seen in Figure 15.2 was created and the opportunity to examine hardware and
software, including the Visualizer was given.

Figure 15.2: Overview of the poster for the Quartierstag.

15.2 Website

In today’s world, it is of paramount importance to establish an online presence.
To this end, a digital presence was created. First, an Instagram account exists,
which will be actively curated in the near future. What is already accessible
by the public is the website. The project’s website displays the most important
information for the public. Its public domain is https://itraffic-uol.de/.

The website is a good way to document the progress being made over time
and to also show it to stakeholders. The content should primarily address the
goals of the project group. Progress should be documented as well as challenges
to avoid or not to repeat possible mistakes. The team represents the basic
building block of the project group and is therefore presented. This way, even
strangers who have nothing to do with the project group can build a good
understanding of it.

100

https://quartierstag.de/
https://itraffic-uol.de/


15.2.1 Dependencies

The following tools are used to create the website:

• Jekyll (Static Site Generator)

• Minimal Mistakes Theme for Jekyll

• Ruby’s bundler gem in order to manage the projects dependencies

• Gitlab CI/CD for building and deploying the site automatically

15.2.2 Content Review Policy

Since the content affects everyone and appears online, changes should be ap-
proved by everyone in advance. Joint reviews are mandatory.

15.3 Email

The teams public email address is: team@itraffic-uol.de

15.4 Instagram

The project group’s Instagram channel can be found here: https://www.inst
agram.com/pg_itraffic/

The Instagram channel is a bit more informal and is intended to represent the
project group away from the achievement of goals. For this purpose, insights into
meetings but also social events can be shared. Regularity to post is secondary.
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Glossary

ROS This refers to ROS2 (Robot Operating System 2). In version 2, speci-
fications have been changed, which also include concrete implementation
changes. The ROS2 version used is ROS2 Humble, which is marked as
Long Term Support (LTS). 31

TurtleBot This refers to used TurtleBot’s within the project group. 31
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