
PG iTraffic with TurtleBots: Preliminary Project

Report

All members

October 9, 2023

Contents

1 Product Vision 1
1.1 Autonomous Driving Functions 1
1.2 Functions of the Non-Autonomous Vehicle 2

2 State of the Art 3
2.1 Levels of Automotive Autonomy 3
2.2 Assisted Driving Functions . 4

2.2.1 Lane Departure Warning System [19] 4
2.3 Related Projects . 4

3 Environment 6
3.1 Model . 6
3.2 Differences between Gazebo and Real-Life 7

4 Vehicle Emulation 8
4.1 Vehicle Model . 8

4.1.1 Motor Model . 9
4.2 Vehicle Configuration . 10
4.3 Engine . 11
4.4 Transmission . 11
4.5 Wheels . 11
4.6 Vehicle Dynamics . 12
4.7 VW Golf VII . 12

4.7.1 Model information . 13
4.7.2 Notes for parameters . 13
4.7.3 Further Sources . 15

4.8 Jaguar F-Type . 15
4.8.1 Model information . 15
4.8.2 Notes for parameters . 15

5 Sensor Augmentations 16
5.1 Camera . 16

5.1.1 Camera Service . 17
5.1.2 Camera Mount . 18

5.2 Odometry . 18

6 TurtleCar-Core 19
6.1 TurtleCar Node . 19

6.1.1 Architecture . 19
6.1.2 TurtleCarNode Core Loop 20
6.1.3 Filtering Sensor Values 22
6.1.4 Unit Testing . 22

6.2 TurtleBot ROS2 Image . 22

7 Code Quality 23
7.1 SCA . 23
7.2 Development Tools . 23
7.3 Continuous Integration . 24

7.3.1 Integration in the workflow with CI 24
7.3.2 Pipeline . 24

8 Lane Detection 26
8.1 LIDAR-Based Lane Detection . 26

8.1.1 Preconditions . 26
8.1.2 Coordinate Transformation 27
8.1.3 Boundary Detection and Lane Projection 27
8.1.4 Current Lane Determination 27

8.2 Camera-Based Lane Detection 27

9 Path Planning 28
9.1 Definitions and Context . 29
9.2 Implementation . 29

9.2.1 Processing the Lane Data 30
9.2.2 Sanitizing the Lanes . 30
9.2.3 Enhancing the Lanes . 31
9.2.4 Planning the Path . 31
9.2.5 Example images . 31

9.3 Writing a custom Path Planner 32

10 TurtleCar-Test 32
10.1 Structure . 32
10.2 Requirements . 33
10.3 Test Case Configuration and Requirements Capturing 33
10.4 Execution . 34
10.5 Implementation Roadmap . 35

11 Driving Functions 35
11.1 Lane Keeping Assistant . 35

11.1.1 General Requirements . 35
11.1.2 Functional Requirements 36
11.1.3 Non-Functional Requirements 37
11.1.4 Additional Information 38
11.1.5 Implementation . 38

11.2 Adaptive Cruise Control . 40
11.2.1 General Requirements . 40
11.2.2 Functional Requirements 41
11.2.3 Non-Functional Requirements 44

12 Organization 44
12.1 Milestones and Timeline . 44
12.2 Sprint-flow . 45
12.3 Sprint Workflow . 46
12.4 Defintion of Done . 50
12.5 Roles . 50
12.6 Tools . 52

12.6.1 Jira . 52
12.6.2 Discord . 52
12.6.3 Gitlab . 53
12.6.4 Google Calendar . 53
12.6.5 Etherpad . 53

13 Public Relations 54
13.1 Quartierstag . 54
13.2 Website . 55

13.2.1 Dependencies . 55
13.2.2 Content Review Policy . 56

13.3 Email . 56
13.4 Instagram . 56

This documentation serves as the very first submission, providing information
of a project still in development. It has been refined to its current state, rep-
resenting the progress achieved thus far. Further iterations and enhancements
to this documentation are expected and planned, but for now, this submission
stands as a reflection of our ongoing efforts.

1 Product Vision

The goal of the project group iTraffic with TurtleBots is to develop autonomous
driving functions with TurtleBots to solve scenarios of varying complexity based
on a German Autobahn. To assure that these driving functions meet their
specifications, test-based validation will be used.

The project group will use the TurtleBot platform as a basis. This makes
it possible to experimentally validate autonomous driving functions in different
simulated traffic scenarios with the use of mostly low-cost sensor technology.
The goal is to present and tackle the challenges of autonomous driving in a way
that is cost-effective and low-risk.

In order to achieve this, a platform for creating autonomous driving func-
tions based on the TurtleBot will be developed. It will enable members of the
project group as well as future developers to implement controllers for vehicles
on different autonomy levels and simulating those vehicles on a TurtleBot. This
platform is called TurtleCar.

Additionally, TurtleCar will provide capabilities to validate the controllers
in a simulated as well as a real life environment. For this, a language to define
test cases for the controllers will be developed. The simulation suite

”
Gazebo“

will be used for testing in a simulated environment. Using the simulation,
it will be possible to automatically execute test cases, gather the results and
determine whether the test conditions where met. TurtleCar will ensure that
both environments behave similarly with regard to the inputs and outputs of
the controller.

Using the TurtleCar platform, several scenarios of various complexities will
be developed and provided for the creation of test cases for the testbed. This
will enable a developing cycle that is closely related to the DevOps method: The
development of the testbed follows the requirements posed by the scenarios, and
can be adjusted as needed.

1.1 Autonomous Driving Functions

The scenarios developed as part of this project group will all be based on a
highway with the properties of a German Autobahn. Controllers with three
different levels of autonomy will be built:

• no autonomy

• partially automated

• highly automated

The functions will be implemented using suitable, robust control strategies.
They will be based on the current state of the art in the control engineering
domain.

1

1.2 Functions of the Non-Autonomous Vehicle

The non-autonomous vehicle has no assistance systems. In the non-autonomous
vehicle, a human driver controls the vehicle completely. They can define the
speed and the steering angle, and the bot moves according to the vehicle’s
dynamics.

Functions of the Partially Automated Vehicle The partially automated
vehicle can perform certain functions autonomously within bounded conditions.
It may call for the driver’s intervention if needed.

Lane Keeping Assistant The driver will determine the speed of the ve-
hicle. As long as the Lane Keeping Assistant is activated, the vehicle will keep
to the center of its current lane without the need of the driver to control the
steering angle.

Adaptive Cruise Control The speed of the vehicle will be partially de-
termined by the driver. When Adaptive Cruise Control is activated, and an-
other, slower vehicle is driving in the front, the speed will be adjusted so that a
safety margin will be kept.

Lane Changing When the Lane Changing function is engaged, if condi-
tions permit, the vehicle will execute lane changes, while maintaining appropri-
ate spacing from neighboring vehicles.

Collision Avoidance System The vehicle will avoid static obstacles like
road works by changing lanes or stopping safely before the obstacle until a safe
lane changing is possible.

Overtaking The vehicle will avoid obstacles moving in the same lane,
like a slower car ahead, by changing lanes or reducing speed until a safe lane
changing is possible.

Functions of the Highly Automated Vehicle The highly automated vehi-
cle is able to drive on the highway without needing intervention from the driver.
All actions will be self-initiated. Using only the aforementioned driving func-
tions, it will move the vehicle forward as safely as possible without any input
from the driver while adhering to the German traffic regulations in terms of
safety margins. Also, it will adhere to speed limits and

”
no overtaking“ road

signs.

Malicious Agent Avoidance The vehicle will avoid collisions with cars
which are moving in defiance of traffic rules by choosing a safe driving strategy.‘

2

Platooning In platooning mode, the vehicle will join a closely coordinated
group of vehicles traveling in a convoy-like formation. The system will auto-
matically control the vehicle’s speed, following distance, and positioning within
the platoon. The platooning system will continuously communicate with other
vehicles in the group, ensuring safe and efficient travel.

2 State of the Art

This section introduces the autonomy levels according to SAE, shows the group’s
ongoing research on driving functions, and outlines past projects working on
similar topics.

2.1 Levels of Automotive Autonomy

The Society of Automotive Engineers (SAE) defines levels of autonomy in on-
road automated driving vehicles. The SAE standard J3016 202104 [26] outlines
the six levels of driving automation, ranging from Level 0 (no automation) to
Level 5 (full automation) depicted in Table 1 as follows.

Level Description
Level 0 No Driving Automation
Level 1 Driver Assistance
Level 2 Partial Driving Automation
Level 3 Conditional Driving Automation
Level 4 High Driving Automation
Level 5 Full Driving Automation

Table 1: Levels of driving automation according to the SAE standard
J3016 202104 [26]

While level 1–2 use
”
driver support“ features, level 3–5 use

”
automated

driving“ features. The level of driving automation of a vehicle is determined by
a combination of factors: the extent of required human involvement in driving
tasks, the vehicle’s capability to perform driving functions, and the operational
design domain under which a feature is designed to function (e.g. environmental
restrictions). The standard also differentiates between three types of actors: the
(human) user, the driving automation system, and other vehicle systems and
components.

Because of this, systems that provide alerts about driving hazards are ex-
cluded from this classification as they neither automate driving tasks nor change
the driver’s role in performing them. Additionally, the lane keeping assistant,
the electronic stability control or other certain types of driver assistance sys-
tems are not covered by this driving automation classification. This is because
it provides momentary intervention rather than sustained automation of driving
tasks.

3

2.2 Assisted Driving Functions

The following contains the initial research done before implementing driving
functions.

2.2.1 Lane Departure Warning System [19]

The Lane Departure Warning System is a feature designed to alert the driver
when their vehicle unintentionally drifts from its lane without using a turn
signal. There are different types of such a system:

• Lane departure warning (LDW)

• Lane keeping assist (LKA)

• Lane centering assist (LCA)

• Automated lane keeping systems (ALKS).

While the LDW only warns the driver, the LKA ensures that the vehicle
stays in its lane. Furthermore, the LKA makes sure that the car stays centered
in its lane. The ALKS is a combination of LKA and ACC.

There are several vehicles in which a LDWS is integrated dating back to 2001.
Generally, they are based on video sensors mounted behind the windshield, laser
sensors and infrared sensors.

The LDW observes the TurtleBot’s movements and its position within the
lane. It can recognize the TurtleBot leaving its lane without using a turn signal
and gives an alert. The LDW can be implemented with the LIDAR Sensor by
orienting the lanes along a wall and / or with the camera

When the lanes can be perceived, the TurtleBot leaving its lane or starting
to leave its lane has to be recognized. This can be achieved by observing the
displacement of the TurtleBot in its lane. To later control the TurtleBot to stay
in its lane, the direction in which the TurtleBot deflects should be identified as
well.

2.3 Related Projects

In the past, there were several projects from the Carl von Ossietzky University
of Oldenburg who dealt with implementing driving functions on hardware rep-
resenting a vehicle. In the following, these will be described and distinguished
from the project group.

”
Realtime Controlled Cooperative Autonomous Racing System“ (RCCARS)

has undertaken the task to develop a safety-critical system using the racetrack
Mini-Z Grand Prix Circuit 30 and RC-Cars from Kyosho. This system is re-
sponsible for observing and controlling autonomously operating vehicles on a
racetrack. In their

”
collision-free“ scenario, a single car is supposed to au-

tonomously complete five laps on the racetrack at a minimum average speed of
1.5 m/s without colliding with the track’s boundaries. [6]

4

”
Realtime Controlled Cooperative Autonomous Racing System Next Gener-

ation“ (RCCARSng) builds upon the work of RCCARS. It extends the project
by adding a second car and several static obstacles. Both cars are supposed
to complete a minimum of ten collision-free laps. During this, both vehicles
have the opportunity to overtake each other and should avoid obstacles while
doing so. This group divides their scenario

”
collision-free overtaking“ in three

variants:

• One vehicle following the other.

• One vehicle overtaking the other.

• Following and overtaking while avoiding obstacles. [5]

RCCARS and RCCARSng both use global knowledge and external calcu-
lations. A camera situated above the racetrack perceives the track and the
vehicles on the track. There exists an external component responsible for loca-
tion determination and for controlling the vehicles. For the overtaking function,
they use a preceding trajectory calculation implemented in Matlab.

”
Emergency Braking Assistant for fully Autonomous Cars“ (EmBrAAC) has

undertaken the task to develop a real-time vehicle assistant. Depending on the
situation, it should be capable of calculating an evasive strategy or performing
emergency braking. They use a remotely-controlled vehicle from Traxxas in
combination with a predefined and self-build course. Their focus lies on real-
time capabilities and contract-based design. [13]

Within the context of the university course
”
Forschendes Lernen - Mobiles

Multiagenten-Robotersystem“ eight students investigated and practically im-
plemented method-oriented topics in the field of mobile robotic systems using a
TurtleBot. They familiarized themselves with the simulation software Gazebo
and used it to validate initial prototypes before transferring them into real
hardware. After doing some fundamental work with the TurtleBot and Gazebo
software, the students were split into two groups.

One group focused on using Simulink to address the question
”
How can an

autonomous driving function for obstacle avoidance be developed?“. As part
of this, they developed control algorithms that enable the robot to follow the
desired path, navigate around obstacles, and perform precise navigation.

The other group, using Python, explored the question
”
How is realistic driv-

ing behavior simulated?“. In doing so, they researched vehicle models and
implemented a suitable one. This included considering factors such as friction,
inertia, road conditions, and other physical properties.

During the course, Simulink and Python were compared for the implemen-
tation of driving functions on a TurtleBot. The course was meant as a pre-
liminary project for the

”
iTraffic with TurtleBots“ project group. The project

group adopted the vehicle model and knowledge about the differences between
reality and Gazebo simulation.

The project group
”
iTraffic with TurtleBots“ enables the utilization and

implementation of driving functions on a TurtleBot based on local knowledge.

5

The implemented functions use a camera und a LIDAR sensor on the TurtleBot.
These sensors can be combined freely. The environment in which the TurtleBot
operates and the TurtleBot itself closely resembles reality: The TurtleBot is
located on a three-lane highway and behaves like a specific car. The goal is to
develop a modular development platform. That means vehicle models, environ-
ments and driving functions can be added and are interchangeable. Alongside
the creation of the development platform, an automated testing platform is
created. This allows experimentally validating the driving functions.

3 Environment

To develop a testing framework based on the German Autobahn, it is necessary
to create a representative environment. Such an environment has to be defined
in a way that can be used in real-life and in a Gazebo simulation.

3.1 Model

A German Autobahn generally has the following measurements [25]:

• Lane width: 2,75m - 3,75m

• Dash mark width: min. 15cm

• Dash mark length: 6m

• Dash mark spacing: 12m

The real-life and Gazebo models of a three-lane Autobahn use the dimensions
depicted in figures Figure 1 and Figure 2.

Figure 1: Specifications of the
straight Autobahn environment

Figure 2: Specifications of the
curved Autobahn environment

This is done because the TurtleBot is supposed to represent a real car, but its
dimensions are much smaller than a car’s. Thus, the road dimensions need to be
scaled down to correspond to the TurtleBot’s. Figure 3 shows the specifications
of the updated road dimensions.

6

Figure 3: Scales of the TurtleBot in relation to real cars

The environments are depicted as in Figure 4 and Figure 5.

Figure 4: Road in real-life

Figure 5: Road in the simulated en-
vironment (Gazebo)

3.2 Differences between Gazebo and Real-Life

Various aspects of the Gazebo simulation lead to inevitable differences between
it and the actual real-world setup. The following differences between the two
have been identified:

• Gazebo has a continuous guardrail. In the real-life model, this is approx-
imated with smaller straight segments, which can lead to inaccuracies es-
pecially in curves. If the segments are placed too far apart, it can happen
that a hole in the wall is detected, resulting in calculating wrong lanes.

• The small stands for the guardrail segments in real-life currently reach

7

into the lanes. This provides a potential hazard to the TurtleBot at the
moment.

• The obstacle in Gazebo is 33cm x 100cm while in real-life it is 32cm x
44cm. This means that the real-life obstacle doesn’t completely fill a lane.

• The positions of lanes and lane markings in Gazebo are according to the
measurements in Figure 1 and Figure 2. In real-life, they might be different
depending on how precisely they are set up. The ground segments in real
life are not perfectly flat, resulting in small inaccuracies in the lane widths.

4 Vehicle Emulation

This page describes the vehicle model and the configuration files used to emulate
a specific vehicle with the TurtleBot.

4.1 Vehicle Model

The vehicle emulation is based on the Kinematic Bicycle Model. The Bicycle
Model is a simplified representation of a car’s dynamics that is often used in
the field of vehicle dynamics and autonomous driving for simulation and control
purposes. This model captures the essential dynamics of a vehicle while being
computationally efficient. It is called the

”
bicycle model“ as it consolidates the

dynamics of a car into a two-wheeled model, where the two front wheels and
the two rear wheels are each represented as a single wheel.

In the Bicycle Model, the following variables are defined:

• X and Y : The longitudinal and lateral positions of the vehicle, respec-
tively.

• θ: The heading angle of the vehicle.

• v: The speed of the vehicle.

• α: The steering angle.

• l: The wheelbase, or the distance between the front and rear axles.

The equations provided describe the kinematic relationships of the model [11]:

ẋ1 = Ẋ = v · cos(x3)

ẋ2 = Ẏ = v · sin(x3)

ẋ3 = θ̇ =
v

l
· tan(α)

In the context of simulating TurtleBot behavior, the Bicycle Model provides a
framework to emulate vehicular motion. The TurtleBot’s linear and angular
velocities can be controlled to emulate the motion of a vehicle as described by
the Bicycle Model. The model’s parameters are mapped to TurtleBot controls
as follows:

8

• The longitudinal velocity v of the model corresponds to the linear velocity
of the TurtleBot.

• The steering angle α of the model is used to control the angular velocity
of the TurtleBot, this needs to take into account that the TurtleBot only
has a single wheel axis.

Additionally, a motor model is used and integrated into the Bicycle Model.
Thus, the calculated speed of the vehicle is influenced by the simulated engine,
which in turn is dependent on the current gear and transmission rates. The
motor model plays an important role in determining the vehicle’s speed and
acceleration. The values used by the motor model depend on the vehicle being
emulated.

4.1.1 Motor Model

The motor model is implemented through a series of calculations and functions
which account for various factors including the engine’s rotational speed (RPM),
torque and gear ratios. The following sections provide an explanation of how
the motor is modeled.

Engine RPM Calculation: The engine’s rotational speed (RPM) is com-
puted based on the vehicle’s current speed, the wheel circumference, and the
current gear and final drive ratios.

1. Convert the speed from meters per second (speed m s) to meters per
minute by multiplying with 60:

speed m min = speed m s · 60

2. Calculate the wheel rotations per minute (RPM) by dividing the speed in
meters per minute by the wheel circumference (wheel circumference m):

wheel rpm =
speed m min

wheel circumference m

3. Finally, calculate the engine RPM by multiplying the wheel RPM with
the current gear ratio (current gear ratio) and the final drive ratio
(final drive ratio):

engine rpm = wheel rpm · current gear ratio · final drive ratio

Torque Calculation: The current torque is calculated based on the engine’s
RPM. A linear interpolation function, interp1d, is employed to interpolate the
torque values from a predefined set of engine speed and torque points.

9

Gear Shift Handling: The motor model checks whether a gear shift is avail-
able or necessary based on the current RPM and the specified RPM ranges for
each gear. If a gear shift is required, the current gear is updated, and the time
of the last gear switch is recorded.

Engine Acceleration Force Calculation: The engine acceleration force is
the total force provided by the engine and is calculated using the current torque,
gear ratio, final drive ratio, and the wheel radius. This calculation accounts for
transmission losses.

1. Compute the engine torque after transmission by multiplying the average
engine torque (avg engine torque nm) with the gear ratio (gear ratio)
and the final drive ratio (final drive ratio):

engine torque after transmission = avg engine torque nm

· gear ratio · final drive ratio

2. Compute the engine torque after accounting for engine losses by multi-
plying the engine torque after transmission with the engine loss factor
(engine loss):

engine torque after losses = engine torque after transmission · engine loss

3. Finally, calculate the engine acceleration force by dividing the engine
torque after losses by the wheel radius (wheel radius m):

engine acceleration force =
engine torque after losses

wheel radius m

The Bicycle Model, paired with the simulation of a motor, enables realistic
emulation of a variety of vehicles in a robust and simple way, aiding in the
development and testing process.

4.2 Vehicle Configuration

Vehicle configuration files, which contain all parameters necessary to simulate a
realistic vehicle, are used. These can be switched out depending on the simulated
scenario. Each configuration file is written in the YAML language and contains
the parameters for a specific vehicle model. Furthermore, the configuration
of each vehicle includes models for single vehicle parts such as the Motor or
the Transmission. This modularity enables constructing configurations using
various vehicle part models that have already been defined. Currently two
different configurations are used, one for simulating a sports car (Jaguar F-
Type) and one for a more casual car (VW Golf VII). The modules describing
vehicle parameters are divided into five categories.

10

4.3 Engine

The engine is a component that is used by all vehicles and usually varies from
vehicle to vehicle, therefore, its parameters need to be specified separately. Per-
formance diagrams might need to be evaluated to acquire some of the engine
parameters.

Table 2: Engine Specifications

Parameter Unit

Max torque Newton Meter (Nm)
Speed at maximum torque Revolutions per minute (RPM)
Maximum power HP
Speed at maximum power RPM
Average torque Nm
Average loss Percentage
Speed points full load RPM
Static torque points full load Nm

4.4 Transmission

Similar to the engine, transmissions are usually unique across different vehicle
models.

Table 3: Transmission Specifications

Parameter Unit

Gear switch time Seconds
Start speed Revolutions per minute (RPM)
End speed Revolutions per minute (RPM)
Gear Ratio Multiplier value
Final drive ratio Multiplier value

4.5 Wheels

The wheels are a highly variable component when comparing different vehicles.
The configuration of wheels uses one of the basic wheel size specified by the
manufacturer.

11

Table 4: Wheel Characteristics

Parameter Unit

Wheel radius Meter
Wheel circumference Meter
Friction Newton

4.6 Vehicle Dynamics

The remaining parameters are dependent on the whole car.

Table 5: Vehicle Dynamics and Performance

Parameter Unit

Maximum steering angle Radians
Wheelbase Meters
Braking force Newton
Mass Kilogram
Air resistance Newton
Aerodynamic drag Newton
Frontal area Square meter
Maximum speed KPH
Acceleration time 0 to 100 KPH Seconds

4.7 VW Golf VII

The VW Golf VII was selected to represent a casual everyday car compared
to the rather sporty Jaguar F-Type. The file VW-Golf-7_2-0-TDI_DSG.yml de-
scribes a Volkswagen Golf MK7 with an 2.0 litre diesel engine which provides 150
HP. The used parameters correspond to models built from 12/2016 to 05/2020,
and mainly influence the motor and transmission type. There has been a facelift
in 2017, which slightly changed the exterieur und interieur design, but has no
impact on technical parameters.

The transmission type is a DSG, which is an automatic transmission in the
Volkswagen Group, and has seven gears. The specific transmission type is called

”
DQ381“. The default wheel and tires suggested by the manufacturer are of the
dimensions 205/55 R16.

Some of those specifications are not strictly bound to the car model itself, e.
g. the transmission

”
DQ381“ is used in many other vehicles. The information

regarding the specifications of this vehicle was gathered via several internet sites
and is linked in the subsection below.

12

Important note:
In comparison to the Jaguar F-Type configuration file, the golf has two different
final gear ratio for different sets of gears. Due to this fact, the Jaguar F-
Type configuration was adapted to represent this structure.

4.7.1 Model information

Table 6: VW Golf VII Model Details

Parameter Details

Model VW Golf VII 2.0 TDI with DSG
Build Duration 12/2016 - 05/2020
Remarks The Golf VII had a facelift in 2017 (no

impact on specifications)
Engine Type Diesel
Engine Series VW EA288
Engine Code Letters CRMB, DCYA, DEJA, CRLB
Displacement 1968 cm3

Max. HP @ RPM 150 @ 3500 - 4000
Max. Torque @ RPM 340 @ 1750 - 3000
Used Wheel Size 205/55 R16
Transmission Type DQ381
Remarks on Transmission DSG with 7 gears (From 12/2026, 6

gears previously)
Drive Type Front wheel drive

4.7.2 Notes for parameters

Mass

• The mass is calculated by adding 100 kg to the curb weight (Leergewicht)
of the car.

• Curb weight is 1316 kg.

• 100 kg is split into:

– avg. of 80 kg for one person.

– roughly 20 kg of fuel (diesel mass = 0.820g per litre times half tank
volumes = 25 litres).

Final Drive Ratio

• The used transmission has two values instead of a single global one for
each gear.

• The final drive ratio is assigned to each corresponding gear.

13

Steering Angle

• Auto Motor und Sport specifies a
”
40◦steering angle for conventional ve-

hicles“ [2].

• 40◦converts to 0.6981 radians.

Braking Force

• In Newton, given by weight times deceleration.

• Deceleration depends on how hard the brake is applied.

– Emergency braking equals about 10.6m/s2 for the Golf MK7 [8].

– The Minimum required by law is 2.5m/s2 [7].

– For calculation 7m/s2 is used, which represents medium braking.

• 1416 kg times 7m/s2 equals 9912N.

Aerodynamic drag, Frontal area and Air resistance

• The values were taken form the collection of Rüdiger Cordes [10].

Gear Switch Time

• The values were taken from VWVortex [12].

Gears

• The following links contain information about the gear ratios:

• https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-g

ear-ratios.360005/

• https://forums.tdiclub.com/index.php?threads/shift-points-o

n-mk7-tdi-manual.431653/

– Even though internally manual gears are used in the model, the shift
points should be the same as in the acquired data.

Engine

• The dyno chart was taken from More BHP [3].

– It shows two graphs, the important one is the thick line representing
the stock engine.

– The chart was manually evaluated using Engauge Digitizer [20].

14

https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-gear-ratios.360005/
https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-gear-ratios.360005/
https://forums.tdiclub.com/index.php?threads/shift-points-on-mk7-tdi-manual.431653/
https://forums.tdiclub.com/index.php?threads/shift-points-on-mk7-tdi-manual.431653/

4.7.3 Further Sources

• Car:

– https://de.wikipedia.org/wiki/VW_Golf_VII#Dieselmotoren

– https://carwiki.de/vw-golf-7-technische-daten/(mustbema

nuallysettoDiesel/150PS/2.0TDI(150PS)DSG)

– https://www.auto-data.net/de/volkswagen-golf-vii-facelif

t-2017-2.0-tdi-150hp-dsg-27831

• Wheels:

– https://www.1010tires.com/Tools/Tire-Size-Calculator/20

5-55R16?active=0&ismetric=true

4.8 Jaguar F-Type

The configuration of this vehicle model originates from the pre-project and
contains the specifications of a Jaguar F-Type. The Jaguar F-Type was selected
to represent a sports car amongst the vehicles that will be simulated.

4.8.1 Model information

Table 7: Jaguar F-Type Specifications

Parameter Specification

Model Jaguar F-Type
Engine type 3-litre V6 DOHC V6
Max. HP @ RPM 340 @ 6500
Max. torque @ RPM 450 @ 3500
Used wheel size 295/30 R20
Transmission type Automatic, ZF8HP, RWD
Drive type Rear-wheel drive

4.8.2 Notes for parameters

Mass

• The mass is calculated by adding the driver’s weight to the curb weight
of the car.

• Curb weight is 1741 kg.

• Driver’s weight is 80 kg.

15

https://de.wikipedia.org/wiki/VW_Golf_VII#Dieselmotoren
https://carwiki.de/vw-golf-7-technische-daten/ (must be manually set to Diesel / 150 PS / 2.0 TDI (150 PS) DSG)
https://carwiki.de/vw-golf-7-technische-daten/ (must be manually set to Diesel / 150 PS / 2.0 TDI (150 PS) DSG)
https://www.auto-data.net/de/volkswagen-golf-vii-facelift-2017-2.0-tdi-150hp-dsg-27831
https://www.auto-data.net/de/volkswagen-golf-vii-facelift-2017-2.0-tdi-150hp-dsg-27831
https://www.1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&ismetric=true
https://www.1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&ismetric=true

Engine

• Engine speed for maximum torque: 3500 rpm

• Engine speed for maximum power: 6500 rpm

• Maximum engine speed: 6500 rpm

• Minimum engine speed: 1000 rpm

Transmission

• Highest gear: 8

• Final drive ratio (differential): 3.31

• Driveline efficiency: 0.85

Tires

• Tire width: 0.295 m

• Rim diameter (converted to meters): 0.508 m

• Wheel (tire) friction coefficient: 1.1

• Rear axle load coefficient: 0.65

Vehicle

• Drag coefficient: 0.36

• Frontal area: 2.42 m2

The parameters were taken from X-engineer.org [27]. Additionally, this site pro-
vides a single final_drive_ratio parameter that applies to all gears and there-
fore was initially being set only once. Due to the introduction of the VW Golf
configuration (subsection 4.7) which has two different final_drive_ratio, this
parameter was copied and is the same for both final drive ratios.

5 Sensor Augmentations

This section describes various sensor augmentations made during the project
group. The augmentations are ranging from hardware modifications to addi-
tional ROStopics.

5.1 Camera

The camera of the TurtleBot streams the image data in front of the TurtleBot
into the ROSnetwork. The camera data can then be used to perform lane and
object detection in the frames sent by the camera. Lane boundaries and road
participants are examples of objects to be detected.

16

5.1.1 Camera Service

The camera service is used to stream image data into the ROSnetwork. It can
be used in two ways:

• With a Server

• Headless

With a Server This variant uses a web server to show the image stream sent
by the TurtleBot camera on a webpage. The server is hosted on the TurtleBot’s
network address and is running on port 5000. To see the images, the webpage
has to be refreshed once after starting the camera service. This variant is more
suitable for troubleshooting.

Headless The second variant needs no user interaction for sending messages.
If you call the ROSservice

/camera_serice

it will either start or stop sending images.

Parameters In the service request, different values are used for parameters
as

”
Opcodes“ to customize how the node should behave. These are listed below:

Table 8: Parameters for the camera service request

Parameter Description Default Value

request The request opcode 0
frame width The requested frame width of images 640
frame height The requested frame height of images 480
frame rate The framerate to capture images with 10

Table 9: Table for Opcodes

Opcode Description

0 Toggels camera server

Table 10: Parameters for the camera service response

Parameter Description Default value

status The response Code 0
message A message with status information n.a

17

Table 11: Table for status codes

Opcode Description

0 Success

5.1.2 Camera Mount

The TurtleBot already had a static mount for the camera attached. To be able to
dynamically change the viewport of the camera, the simple mount was replaced
by a more advanced mount. This new mount uses a pan-tilt design to make the
camera angle adjustable on two axles. The new mount was designed for and
printed using a 3D-printer. For the assembly, small screws were used and the
servos were put in place, even though they are not connected or controlled yet.
It can be seen in Figure 6.

Figure 6: New camera mount with movable joints to control the camera with
servo motors.

5.2 Odometry

The TurtleBot uses the Odometry topic /odom to publish information about the
TurtleBot’s position and movement. This data is however quite nosiy. In order
to acquire smoother data, an Extended Kalman Filter is employed to combine
Odometry and IMU data. The IMU sensor yields data about the TurtleBot’s
orientation. The topic /odometry/filtered is used to publish the filtered data.

The filter was implemented using an online guide by
”
Automatic Addi-

18

son“ [1]. The following dependency is required for the filter node:
ros-humble-robot-localization

6 TurtleCar-Core

There are multiple ROS Nodes running on the TurtleBot which together form
TurtleCar-Core. The architecture of each node is described here. In order to run
these nodes, a specific setup of the image running on the TurtleBot is required,
which is explained here as well.

6.1 TurtleCar Node

In the module called TurtleCar-Core, the main parts of the software controlling
the TurtleBot are implemented. Its tasks are to gather sensor data, define
a control action according to its current scenario and goal, and publish that
action to the relevant actuators.

6.1.1 Architecture

The diagram in Figure 7 shows the basic building blocks of the code. It is
simplified in the way that the TurtleCarNode class is the root class and consists
of all other classes. In order not to clutter the diagram, these compositions are
not drawn.

Figure 7: Static view of the architecture of the TurtleCarNode

The architecture is modular and can be separated into these classes:

• TurtleCarNode: The TurtleCarNode class is the root class. It provides
the ROS interface which is used by other parts of the software to subscribe
or publish to ROS topics. It is also the root for the tree of dependent
classes.

19

• Model: The model represents the observable state of the robot. It con-
tains information on the state of the vehicle as well as the environment
and the control actions taken. It is filled by the SensorEvaluator classes
and read out by the Observer.

• Sensors Evaluators: These classes read out sensor values by subscribing
to their ROS topics and processing the information gathered to create
meaningful information from them, e.g. detecting obstacles or lanes. The
processed information is added to the Model. To gain information from a
sensor and put it into the model, this class needs to be inherited from.

• Observer: This class acts as an Observer in the context of control de-
sign. The data in the model only represents the observable state, which
may not be the complete state information needed to control the system.
The observer estimates the actual state from the observable model. The
Controller and the Visualizer read from this observer instead from the
Model directly. If the model is amended, the observer probably has to be
altered as well.

• Controller: Reads the state information provided by the Observer and
decides on a control action depending on that state. Writes the control
action back into the Model. Adaptation of the robots actions is done here.
Third parties are able to write their own controllers, in order to implement
driving functions.

• Visualizer: Reads the state information provided by the Observer and
visualizes it through a GUI. You may add additional visualizers.

• Transposer: The goal is to simulate a car which has a different behaviour
than the Turtlebot. The Transposer reads the control actions from the
Model and maps them to the behaviour of the car model. It then pub-
lishes messages via the TurtleCarNode to the bot’s actuators so that the
robot shows that behaviour. Since it simulates the car, it also writes the
information about the car’s new state - like the current gear - back into
the Model.

6.1.2 TurtleCarNode Core Loop

The core loop of the TurtleCarNode on a high level is shown in figure Figure 8.

20

Figure 8: Start and core loop of TurtleCarNode

21

6.1.3 Filtering Sensor Values

The information gathered from the sensors via the ROS interface may need to
be filtered to be usable by the modules interpreting that sensor data. In the
context of the project group, two variants of filtering are defined, which are
reflected in different aspects of the architecture:

Technically Necessary Filtering There exist technical reasons for filtering
values directly when they are retrieved from a ROS message. One example
is the LIDAR: It has a varying resolution which must be upscaled to a fixed
resolution by interpolating missing values. This is done directly when retrieving
the values. Sensor Evaluators using the standard lidar.subscribe_lidar()

function implicitly receive the fixed-resolution values. When necessary, a similar
standard filtering behaviour may be implemented for other sensors as well.

Task Specific Filtering Some Sensor Evaluators may have requirements for
filtering the sensor values that are not necessary for processing the values, but
are functional requirements related to their task. These filters are implemented
in the context of the Sensor Evaluator and only used to fulfill its task, but do not
influence the input to other Sensor Evaluators. Each Sensor Evaluator has to
explicitly implement the filters it needs or explicitly use a filter function shared
between evaluators.

6.1.4 Unit Testing

pytest [18] is used to perform unit tests. For mocking, mockito-python [21] is
used. When writing unit tests, the following criteria should be met:

• Test one specific aspect of the code under test

• Mock the complete environment of the function. Everything that is not
part of the code under test should not be executed.

• If the tests or the mocking effort is high, consider refactoring the tested
code to enable smaller tests.

All tests are located in the tests directory.

6.2 TurtleBot ROS2 Image

It is possible to automatically build a minimal, customized image, which is real-
time capable, for the TurtleBot. The repository which can be used for this can
be found in the project groups GitLab [17].

Dependencies are customizable by opening

image_builder/data/jammy-rt-hubmle/scripts/

22

and adapting the file phase1-target. Under the comment
”
user-specific depen-

dencies“ it is possible to add desired dependencies via apt.
To build the image, change to the top folder and run

make jammy-rt-ros2

After that, a fully bundled .img file is generated, which can be burned to an
sd card. Detailed documentation can be found in the repository. Please note
this is an updated version of another public project called Raspberry Pi image
with ROS 2 and the real-time kernel [15].

7 Code Quality

In this part of the documentation, elaboration on the decisions regarding Cod-
ing Style and Static Code Analysis (SCA) can be found. In the context of the
project group, Coding Style and SCA are differentiated. Coding Style includes
the ruleset and principles which influence what code is produced. SCA consists
of development tools and CI/ CD methods, which allows maintaining parity
to the set Code Quality. CI stands for Continuous Integration, and is a typi-
cally automatically triggered process that performs tasks such as checking the
source code, running tests and ensuring that the source code is compilable [14].
With this process, the goal of having a stable code repository in terms of Code
Quality is supported, since automatic Code Quality checks are possible. This is
explained in more detail in subsection 7.3.

7.1 SCA

There are two main parts of SCA used in the project group: formatting and
linting. The coding style is provided by the tools used.

Formatting is the way how the code is formatted: which indentation size
is used, how long lines should be and where newlines are located. Formatting
ensures that each line of code that is written is in a format that is comprehensible
by each member of the project group. The code formats automatically and no
further manual intervention is required.

Linting on the other hand makes sure that the code that is written is error-
free and adheres to a certain code style: Here, checks against unused variables,
long lines and unnecessary complexity are employed. Some linting errors are
also fixed by formatting, e.g. long lines. But because fixing most linting errors
is a non-trivial task, oftentimes manual intervention is required.

7.2 Development Tools

In order to ensure that the code is in the correct format and to reduce its
errors, tools are employed. For formatting, use black [4] is used. For linting,
use ruff [23] is used.

Both tools were chosen for the following reasons:

23

• Opinionated

– Being opinionated allows for adhering to community rules forged by
years of development time.

– At the beginning, there is no desire to employ custom, project group
specific rules. Everything is changing constantly - there is no need
for complex configurations, but for quick usage.

• Modern

– Modern tools allow for staying cutting-edge.

– They improve the readability of the codebase.

• Fast

– Being fast means every machine can run the tools, even if one devel-
oper happens to have a slow machine (by modern standards).

– There is no need to worry about the code base growing so large that
the SCA tools will take an unreasonable amount of time to run.

– Limited numbers of job runners are available in GitLab, as the in-
stance is self-hosted. Therefore, being fast reduces the occupation on
those limited resources.

7.3 Continuous Integration

In this section, the ways CI is used in the project group are described. Also, the
configuration of the employed pipelines is explained. Pipelines are essentially a
set of steps the source code has to pass in order to be valid.

7.3.1 Integration in the workflow with CI

In order to allow constant integration, black and ruff are used not only locally,
but also in the GitLab projects pipelines. This ensures that every commit and
merge request is checked.

If black detects that the format is not correct or ruff finds any linting er-
rors, merging the respecting merge request is disallowed. Also, reviewers will
immediately take notice of this and will ask the developer to fix this.

This ensures that the code in the stable branches of the projects remains
protected and in a valid state. Additionally, this provides fast feedback for
developers whether their code contains errors. This makes locating and fixing
errors faster.

7.3.2 Pipeline

In the pipeline, ruff and black are executed. In the following, the mechanics of
the pipeline are documented. This part explains the following:

24

• Elaboration on the pipeline concepts, not the details

• Explanation of the most important caveats, like caching and sometimes
allowing pipes to fail

• Starting point for getting to know the pipeline

How the pipeline works The following will explain the structure & concepts
of the pipeline in use. For a better understanding, please take a look at the
.gitlab-ci.yml. It is included at the root of the turtlebot project.

In the implementation of the pipeline configuration, the official Python
docker image is used, so that some configurations for the executing runner are
already present.

Pipeline Building Blocks

• before_script Block

– Ensures that a virtualenv is used

– Debugs the Python version

– Executes before each job

• build-job

– Currently only a stub

– Might be used later, when actual building of the ros packages is
required

• format-test-job

– Runs black and checks for formatting errors

– Prints encountered errors to ‘stdout‘ for debugging purposes

• lint-test-job

– Runs ruff

– Looks at the .pyproject.toml file in order to configure ruff

– Generates a codequality artifact .json, which is used by GitLab to
measure code quality

– Also prints all encountered errors and warnings to stdout

– By using dependencies, this job only runs after format-test-job

Important note: The test in the jobs name refers to the task of testing if the
source code is in a conforming state. This does not mean that the jobs are only
’test’ versions.

25

Caching the installed pip packages The cache is used in order to let the
runner cache installed packages, so that ruff und black are not reinstalled in
every run of the pipeline.

By configuring PIP_CACHE_DIR, pip is told to cache its dependencies and
installed packages in the directory provided - which are defined as a pipeline
cache directory as well. Therefore, the cache directory gets cached in between
job runs and reused.

Conclusion: Working with the pipeline Now that the pipeline is con-
figured, it is possible to review Merge Requests based on their generated code
quality report. Also, this makes sure that every line of code is formatted in a
consistent way. When committing to a custom branch, or merging to ‘main‘,
the pipeline is evaluated and run. Project members are required to provide
conforming source code, and get hints to why their changes might not be of the
desired quality.

8 Lane Detection

For a TurtleBot that is used in the context of autonomous driving, the ability to
perceive and understand the road environment is of paramount importance. One
crucial aspect of this perception is the lane detection, which involves identifying
and tracking the lanes on the road. Accurate lane detection is a fundamental
building block for many autonomous driving functions, from simple lane-keeping
assistance to complex path planning and decision-making algorithms.

8.1 LIDAR-Based Lane Detection

LIDAR technology plays a pivotal role in the current state of the project’s lane
detection implementation. The LIDAR provides essential data about the robot’s
proximity to surrounding objects. The concept here is to utilize this data to
calculate and represent lane boundaries accurately. Visual lanes as indicated by
lane markings are therefore not directly detected but are rather extrapolated
based on a given road configuration and a rightmost boundary that is detectable
by the LIDAR. These desired preconditions are described below, followed by the
used concepts and calculations of the current implementation.

8.1.1 Preconditions

The calculation of the lane boundaries using LIDAR assumes that a certain
structure for the lanes is always present. One particular assumption is that
there always exists a wall that is detectable by the LIDAR sensor on the right
side of the road. Furthermore, the first lane always has a distance of ws to this
wall, forming a road shoulder with constant width. Additionally, every lane has
the exact same constant width, noted as wl in the following.

26

8.1.2 Coordinate Transformation

The process of the LIDAR-based lane detection begins with transforming polar
coordinates into a more intuitive Cartesian coordinate system. This conversion
simplifies subsequent processing steps and provides a clear representation of
the environment. The Cartesian coordinate system uses the TurtleBot itself as
origin (0, 0). Based on a respective angle αi and a distance value di of each
LIDAR measuring point i, Cartesian coordinates xi and yi for such point can
be created using the common formulas x = d ∗ cos(α) and y = d ∗ sin(α).

8.1.3 Boundary Detection and Lane Projection

Once in Cartesian coordinates, the system calculates the lane boundaries based
on the distance of the robot from a surrounding wall at specific angles. In
particular, this calculation uses the coordinates of a potential wall that is de-
tected between 230◦ and 300◦. This is effectively any wall that is to the right of
the TurtleBots facing direction. A B-spline is then fitted to these data points,
ensuring smooth and continuous representation of the lane-defining wall. Us-
ing B-splines offers the possibility to control the degree of the lane boundaries,
which is useful to extend the lane projections from straight to curved roads.
For individual points of the given B-spline, normalized orthogonal vectors are
then calculated. This is done by first calculating a tangential vector of a given
point on the B-spline, normalizing that vector and then rotating it by 90◦ into
the correct direction. For a given lane n ≥ 0, these normalized vectors deter-
mine the position of the lane’s right (j = n) and left (j = n + 1) boundary, if
multiplied with the factor (ws + j ∗ wl).

8.1.4 Current Lane Determination

Identifying the current lane is the next critical aspect of the lane detection. This
is accomplished by evaluating the closest measured distance to the wall that is
used as a basis for the lane projection, as introduced above. For example, if the
robot’s facing direction is parallel to the wall, the angle for the closest distance
is typically at 270◦. Given that this minimum distance to the boundary wall is
dw, the current lane number nTB can then be calculated as follows:

nTB =

⌊
dw − ws

wl

⌋

8.2 Camera-Based Lane Detection

The camera-based lane detection that uses image recognition concepts to di-
rectly recognize the lanes based on their markings instead of projecting them, is
currently work-in-progress is roughly based on the process depicted in Figure 9.

27

Figure 9: Image transformations for detecting lanes from the camera images.

9 Path Planning

In this section, the planning of paths for a vehicle is described. First, Path Plan-
ning and Trajectory Planning are defined, and context to these topics within the
project group is given. Next, the implementation of Path Planning is explained.
Also, the end of the section contains guidance for building and integrating a cus-
tom path planning module.

28

9.1 Definitions and Context

First, Path Planning is differentiated from Trajectory Planning, and an intro-
duction to what both of these terms mean in the context of the project group
is given. For further references and mathematical function definitions, see Tra-
jectory Planning [22].

Path Planning A path P is a continuous function which connects a start
qstart and a goal qgoal in a coordinate system. Therefore, the domain of P
is [0, 1] and its co-domain is C, i.e. the coordinate space that is used. P is
devoid of any time information, and only resembles the geometric component.
When enriching it with time information, it becomes a trajectory [22]. For us,
planning a path means to plan out a geometric ordered list of points that the
robot should follow, disregarding any time information.

Trajectory Planning A trajectory Π is a path P endowed with a time pa-
rameterization s. s is a strictly increasing function, which gives the position on
the path for each time instant t. Thus, the same path P can give rise to many
different trajectories Π [22]. For us, planning a trajectory means to take into
account time information to the planned path.

At the current state of the project group, trajectories are not planned, only
paths. Planning trajectories would involve many more considerations, which
have not been prioritized as of now.

9.2 Implementation

The architectural overview of the path planning implementation can be seen
in Figure 10. It closely resembles Figure 7, but elaborates more on the path
planning part.

29

Figure 10: Architectural overview with the path planner.

9.2.1 Processing the Lane Data

Since the original sensor readings contain incomplete and not ready-to-use data,
the data is processed before usage. For us, sanitizing lane data refers to the
process of converting it into a different format, that is easier to use than the
original sensor data. Whereas enhancing the lanes means using the format
from sanitizing the lanes, but enhancing its data - e.g. with interpolation.

Sanitizing is done right after the sensor readings are completed, whereas
enhancing is done by the Observer.

9.2.2 Sanitizing the Lanes

Where the old format specified start and end points for each pair of sensor angle
readings, the new format is much simpler. It is called BorderList and is a two-
dimensional list of points. The first dimension contains all borders of lanes, the
second dimension contains a border itself, containing all points that belong to
that border. The result is a BorderList containing each border of the given
lanes exactly once.

30

9.2.3 Enhancing the Lanes

Using the new format, the border points are interpolated using a Euclidean
distance formula. The formula is the following using points p and q:

Distance(p, q) =
√
(q1 − p1)2 + (q2 − p2)2

When the distance of two consecutive points in the border list exceeds a
parameterized threshold, new points are interpolated in between them, also
using this distance formula. There is no real formalized threshold defined, the
results of different parameters are tested empirically.

9.2.4 Planning the Path

Now that the lanes are in a usable format and contain enough data points to
use, a plan for the path for the robot to take can be created. In order to do
that, the middle of the border points from the enhanced lane data is calculated
and thus creates a path along the center of a lane. The path is visualized via
the LanesRenderer.

9.2.5 Example images

In this section, example images for the path planning module are demonstrated.
The snapshots are taken directly from the debugging tool, where orange points
visualize paths and yellow points indicate lanes.

Figure 11: An ordinary
path

Figure 12: A more com-
plex path

Figure 13: Lower border
interpolation resolution

Figure 14: Higher in-
terpolation resolution for
the border

Figure 15: Higher sample
rate and offset to the left
of the border

31

9.3 Writing a custom Path Planner

In order to write a custom Path Planner, the programmer would create a class in
controllers/path/, which extends AbstractPathPlanner. The planner needs
access to Observer, because the lane information is present there. Then, imple-
ment the plan_path() method in the new class. It must return a BorderList.
Afterward, an instance of the new class must be created in the controller.
Controller.plannermust be assigned to that instance. The LanesVisualizer
will now render the calculated path of the custom Planner.

10 TurtleCar-Test

This section describes the usage of TurtleCar-Test with test cases. This includes
integration of the tests with Gazebo and creation of tests in a predefined file
layout.

TurtleCar-Test is a test framework developed by the project group. This
framework includes an extensive test setup, allowing for interactive testing of
both the Gazebo simulation and the controls of the TurtleCar framework. Ad-
ditionally, it supports headless testing, where no user interface is needed.

10.1 Structure

TurtleCar-Test will select the Controller according to the Scenario and initialize
the Robot within the Gazebo Simulator. After the test has completed, it will
return a pass/fail result of the test. The interaction between TurtleCar-Test
and TurtleCar-Core can be seen in Figure 16.

Figure 16: The static view of the interaction of TurtleCar-Test and TurtleCar-
Core

32

10.2 Requirements

For each test case, there are corresponding requirements that must be met in
order to define a correct test. This is described in the following list.

• Robot Model

– Sensors

– Type

• Gazebo Map

• Starting Position, Rotation on Map

• Turtlecar ROS Parameters

– for example: Level of autonomy

– for example: Type of controller

• Emulate user input (via ROS Parameters (special ROS Topics with status
requests))

• Acceptance criteria

– Timeout: (Unit: seconds) If specified, overstepping this timeout
passes the test

– Final Position: (Unit: Gazebo-Coordinates, see sample config for
formatting) If specified, entering this area passes the test

– Area Allowlist: (Unit: List of Gazebo-Coordinates (meters), see sam-
ple config for formatting) If specified, the bot has to stay in one of
these areas for the whole test, otherwise it fails

• Failure Criteria

– Timeout: (Unit: seconds) If specified, overstepping this timeout fails
the test

– Area Denylist: (Unit: List of Gazebo-Coordinates (meters), see sam-
ple config for formatting) If specified, entering this area fails the test

10.3 Test Case Configuration and Requirements Captur-
ing

In order to write test cases as dynamically as possible, a file layout offering a
variety of configurations for individual test cases was created. These files define
formal test cases, in the sense that the necessary criteria in these files must be
met. The file format is written in the markup language YAML.

33

requirements:

robot_model_path: "models/robot_with_camera.model"

gazebo_map_path: "maps/curve.map"

robot_start: {x: 2, y: 4, rot: 3, vel: 0.1 }

alternative

robot_start_area: {x_min: 2, x_max: 4, y_min: 10, y_max: 20,

rot_min: 3, rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

turtlecar_main_path: "turtlecar/main.py"

user_input:

- {time: 0.0, name: "autonomy_level", value: 1}

- {time: 0.0, name: "controller", value: "fast_lidar_controller"}

- {time: 0.5, name: "drive_wish", value: "drive"}

- {time: 0.501, name: "drive_wish", value: "brake"}

- {time: 10.0, name: "turn_wish", value: "left"}

- {time: 10.1, name: "drive_wish", value: "drive"}

acceptance_cirteria:

timeout_sec: 30

final_positions:

- {x_min: 2, x_max: 4, y_min: 10, y_max: 20, rot_min: 3,

rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

area_allowlist:

- {x_min: 2, x_max: 4, y_min: 10, y_max: 20, rot_min: 3,

rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

- {x_min: 2, x_max: 4, y_min: 10, y_max: 20, rot_min: 3,

rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

failure_criteria:

timeout_sec: 60

area_allowlist:

- {x_min: 2, x_max: 4, y_min: 10, y_max: 20, rot_min: 3,

rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

- {x_min: 2, x_max: 4, y_min: 10, y_max: 20, rot_min: 3,

rot_max: 3, vel_min: 0.1, vel_max: 0.2 }

10.4 Execution

The basic structure of TurtleCar-Test consists of the following steps:

1. Read and check configuration

2. Start Gazebo reliably with map, model and start position from config

3. Start testing target (TurtleCar)

4. Wait for end criteria

5. Check pass/fail criteria

6. Stop Gazebo and testing target

34

7. Return Pass/Fail

10.5 Implementation Roadmap

1. Implement Gazebo launch with custom parameters ✓

• Map

• Robot Model

• Start Position

• Start Rotation

• Start Velocity

2. Implement program that checks if Gazebo start parameter are met (check
if start worked) ✓

3. Implement testing config parser ✓

4. Implement testing config checker for conflicting requirements and valid
YAML schema ✓

5. Implement visualizer for allow specified areas ✓

6. (optional) Implement visualizer that allows placing areas ✓

7. Implement core loop that checks if criteria are met ✓

11 Driving Functions

In this section, the driving functions implemented by the project group are
documented. For each driving function, the definition of the requirements, the
controllers used to implement the driving function and the validation is de-
scribed.

11.1 Lane Keeping Assistant

The requirements of the Lane Keeping Assistant are based on the ISO standard
11270 [16], but do not yet cover all aspects. These requirements are subject to
rework.

11.1.1 General Requirements

• The LKA must be able to be switched on or off

– The LKA can be toggled by user input

– The LKA can be switched on by startup flag

• The robot must identify the lane its on and its center

35

• The LKA must be disabled when the lane change disabling condition ac-
cording to the ALKS regulation is fulfilled

• The LKA enabled vehicle should never cross lane borders

• The robot should follow the lane’s center

• The controller should be based on model prediction

11.1.2 Functional Requirements

Requirement LKA.1

GIVEN

• The driving function for the lane keeping is started

WHEN

• The driving function was started with the flag
”
lka-initially-enabled“ or

the
”
K“ key is pressed after the driving function was started

THEN

• The Lane Keeping Assistant is enabled

Requirement LKA.2

GIVEN

• The Robot starts inside of lane boundaries

• The initial velocity is 0, the initial acceleration is 0, the initial steering
angle is 0

• The Robot heading fulfills the following criteria:

– If the robot is left of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2◦to the right of the lane direction.

– If the robot is right of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2◦to the left of the lane direction.

WHEN

• A target velocity is defined by a human driver

• The lane keeping assistant is activated

THEN

36

• The Robot identifies the lane it is on

• The Robot accelerates to the speed defined by the human driver and
maintains this speed

• The Robot follows the center of the lane

• The Robot never crosses lane borders

• The steering angle is always within the vehicle’s specifications

Requirement LKA.3

GIVEN

• The robot is driving with arbitrary speed, arbitrary acceleration

• The lane keeping assistant is active

• The steering angle is arbitrary within the vehicle’s specification

• There is no steering input from the user

WHEN

• The lane change disabling condition according to the ALKS regulation is
fulfilled

THEN

• The lane change assistant is disabled

Requirement LKA.4

GIVEN

• The LKA is enabled

WHEN

• The relevant user input is received

THEN

• The Lane Keeping Assistant is disabled

11.1.3 Non-Functional Requirements

LKA.A

The controller for the lane keeping assistant is based on model prediction.

37

11.1.4 Additional Information

The maximum possible orientation is based on the most narrow curve that a
car with the wheel base length and the maximum steering angle of a VW Golf.
When in the center of the lane, the greatest angle it can recover from is 31◦.
This can be computed as follows:

a: maximum steering angle (40◦for VW Golf)
w: wheelbase length (2.6365m for VW Golf)
r: radius of turning circle
r = w

tan(a)

Then half of the golf’s width is added to the to the radius:
rgolf = r + 0.9
This is shown graphically in Figure 17.

Figure 17: Graphical representation of the maximum heading pointing out of
the lane that a car can recover from

11.1.5 Implementation

For the implementation, a controller based on the bicycle model is used. Since
the bicycle model is a nonlinear differential equation, it is linearized in order to
obtain a linear controller.

Controller Model The Bicycle Model is defined as follows:

ẋ1 = Ẋ = v · cos(x3)

ẋ2 = Ẏ = v · sin(x3)

ẋ3 = θ̇ =
v

l
· tan(u1)

where X is the position in the linear direction of the car, Y the lateral
position, and θ the heading. These are all relative to the next point that the

38

Figure 18: A graphical representation of the state variables used for the con-
troller of the lane keeping assistant. Y and θ are always relative to the next
point provided by the path planner.

path planner provides. Since the Lane Keeping Assistant isn’t able to influence
the speed forwards and only the lateral deviation is relevant ẋ1 can be removed
to simplify the model:

ẋ1 = Ẏ = v · sin(x2)

ẋ2 = θ̇ =
v

l
· tan(u1)

A depiction of the meaning of Y and θ can be seen in Figure 18.
This allows for a simpler linearization. The operating point to linearize

around is x = 0 and u = 0. This represents the state where the vehicle is
exactly on the line that has to be followed, and assumes that the controller only
needs to make small corrections.

With that the system is linearized:

ẋ(t) = f(x, u) = Ax+Bu ≈ f(0, 0) +
∂f

∂x

∣∣∣u=0
x=0

· x+
∂f

∂u

∣∣∣u=0
x=0

· u

=

[
0
0

]
+

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2s

] ∣∣∣∣∣u=0
x=0

· x+

[
∂f1
∂u1
∂f2
∂u1

] ∣∣∣∣∣u=0
x=0

· u

=

[
0 v cos(x2)
0 0

] ∣∣∣∣∣
x=0

· x+

[
0
v

l·cos2(u)

] ∣∣∣∣∣
u=0

· u

=

[
0 v
0 0

]
· x+

[
0
v
l

]
· u

The state feedback control law u = −[k1 k2] · x is used to design the controller.

39

This results in the closed-loop function:

fcl =

[
0 v
0 0

]
· x+

[
0
v
l

]
· (−[k1 k2] · x) =

[
0 v
0 −v

l ∗ k2

]
·
[
x1

x2

]
From the closed loop function it can be seen that k1 can remain undeter-

mined, as the lateral position has no direct influence on the control input. Now
the operating domain for the velocity the Lane Keeping Assistant should be
stable in has to be chosen. For this v ∈ (0, 34] was chosen, which is about 0 to
120 km/h.

Using Matlab the characteristic polynomial for which all eigenvalues have
real parts strictly less than 2 was determined (using an example from previous
exercises). With the coefficients, it is possible to solve for values of k2 which
hold the closed loop system in a stable domain. For this, the parameter space
was sampled with a step size of 0.5. Since the system is uncontrollable for v = 0,
sampling started at 0.5. This resulted in values for k2 ∈ [0.05, 1.4].

This enabled us to build a stable controller for the Lane Keeping Assistant.
From the domain of stable values for k2, choosing k2 = l

v has been determined
experimentally to yield the best results for any speed v.

11.2 Adaptive Cruise Control

11.2.1 General Requirements

• The vehicle must be able to activate/deactivate Adaptive Cruise control
depending on the drivers wishes

– The ACC must be deactivated if the driver takes manual control

• The vehicle must keep at least a minimum safe distance including a suit-
able error margin

– The vehicle should keep the same speed as the front vehicle

– The vehicle must be able to reduce its speed to keep the minimum
safe distance

– The vehicle should be able to increase its speed to keep the distance
to front vehicle

• The driver can issue a command to drive at a certain speed overriding the
ACC

• The ACC must be disabled if the driver issues a brake command

• The ACC controller should be build using model prediction

40

Definition: Minimum Safe Distance To be defined according to relevant
regulations: Minimum safe distance which a following vehicle needs to maintain
in order to be able to decelerate if the leading vehicle brakes (with bounds for
deceleration)

In the German traffic regulations, a rule of thumb to determine the distance
between two vehicles considered safe is described: The vehicle needs to keep a
distance of at least half of the current speed (kilometers per hour) in meters [9,
§2 Abs. 3a S. 2a].

11.2.2 Functional Requirements

Requirement ACC.1

GIVEN

• The ego vehicle is driving behind another vehicle. Both vehicles have arbi-
trary speed and the ego vehicle maintains at least minimum safe distance
to the leading vehicle.

WHEN

• The driver triggers the switch for the adaptive cruise control

THEN

• The Adaptive Cruise Control is enabled

Requirement ACC.2

GIVEN

• The vehicle is driving behind another vehicle with arbitrary speed vi with
at least minimum safe distance including error margin

WHEN

• The adaptive cruise control is enabled

THEN

• The ego vehicle drives at most with velocity vi

• The ego vehicle accelerates or brakes within the velocity bounds so that
it maintains at least a minimum safe distance including error margin to
the leading vehicle

41

Requirement ACC.3

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle brakes to velocity vb

THEN

• The ego vehicle drives at most with velocity vb

• The ego vehicle decelerates to velocity vb and maintains at least a mini-
mum safe distance without error margin at all times

Requirement ACC.4

GIVEN

• The adaptive cruise control is enabled

• The leading vehicle is driving with velocity vi

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has a a distance to the leading vehicle that is smaller than the minimum
safe distance including error margin

• The driver does not give a command to accelerate to a speed greater than
vi

WHEN

• No Action

THEN

• The ego vehicle drives at most with velocity vi

• The ego vehicle decelerates to until it maintains at least a minimum safe
distance including error margin

42

Requirement ACC.5

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle accelerates to velocity va

THEN

• The ego vehicle drives at most with the minimum vm of velocities vi and
va

• The ego vehicle accelerates to velocity vm and maintains at least a mini-
mum safe distance with error margin at all times

Requirement ACC.6

GIVEN

• The adaptive cruise control is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The driver continuously issues a command to drive with velocity vt

THEN

• The ego vehicle accelerates to velocity vt without regard for the minimal
safe distance

Requirement ACC.7

GIVEN

• The adaptive cruise control is enabled

WHEN

• The relevant user input is received

THEN

• The adaptive cruise control is disabled

• The vehicle drives according to the driver’s commands only

43

Requirement ACC.8

GIVEN

• The adaptive cruise control is enabled

WHEN

• The driver issues a braking command

THEN

• The adaptive cruise control is disabled

• The vehicle drives according to the driver’s commands only

11.2.3 Non-Functional Requirements

ACC.A

The controller for the lane keeping assistant is based on model prediction.

12 Organization

This section describes everything related to the internal organization of the
project group. A more detailed description on how the product vision will be
achieved is provided here.

12.1 Milestones and Timeline

In order to reach the project group’s goal, the following four milestones as listed
in the table below were defined.

Milestone Start date End date
MS 1: Lane keeping assistant and funda-
mental architecture

05.05.2023 08.09.2023

MS 2: Adaptive cruise control and basic
testbed features

09.09.2023 28.09.2023

MS 3: Autonomy Features, Robot Vision 29.09.2023 22.12.2023
MS 4: Rogue actor and platooning 23.12.2023 07.03.2023

Table 12: Planned milestones

Furthermore, a more detailed time schedule depicted in Figure 19 is offered.
The thick vertical lines depict the end of a milestone. Additionally, the epic can
be grouped together as follows: driving functions (green), test framework (or-
ange), obstacle avoidance (purple), platooning (blue), documentation (yellow),
and higher-level (grey).

44

Figure 19: Gantt chart of epics

12.2 Sprint-flow

The previously defined milestones will be archived in an agile way using the
scrum process [24]. A sprint lasts three weeks and consists of the following
aspects:

• Feature-Planning (FP)
In this phase Product Owner (PO) and Business Engineer (BE) and all
interested parties consider which features should be developed in the future
to reach the milestones. The features are recorded in Jira. Tickets are
created that contain the needed requirements.

• Implementation
During this period, the tickets are processed, documentation is written,
and reviews are performed by others so that they can finally be merged.

• Review
The goal of the review is to bring all stakeholders up to date. It should
be mentioned which goals have been achieved and the progress should be
presented.

• Retrospective
The team sits down internally at the retrospective at the end of the sprint
and draws a summary. The focus is on filtering out problems, exploring
possible solutions and citing positive aspects.

During the sprint, a weekly serves as an exchange with the stakeholders
by giving a quick presentation of last week’s progress. Internally, meetings

45

are scheduled twice a week. Once every sprint, a refinement of the backlog is
planned which is done to facilitate the feature planning and refine Jira tickets
to enable faster sprint plannings.

12.3 Sprint Workflow

To assure that all members follow the same workflow regarding the arising tasks
during a sprint, the following well-defined workflows have been agreed upon.
For example, every sprint follows a specific workflow. An overview is given
in Figure 20, where every colored step (except the

”
Sprint planning“) resembles

one column in a Jira Sprint Board, as it is shown in Figure 21. First, the sprint
has to be planned. Every ticket in the sprint is then assigned to one or more
people. When they have finished processing the ticket, it goes into review and
finally into acceptance by the PO or BE.

Figure 20: Overview of how the work on items in a sprint is done.

Since some of these steps are complex in nature, it is important to clearly
define their respective workflows. This is done by the following diagrams, with
continued usage of the color coding as seen above. The

”
Sprint planning“ work-

flow is described in Figure 22. The activity
”
To-Do“ is empty, as this step

only consists of waiting for any ticket-related work to start, thus requiring no
well-defined workflow. The workflow described in Figure 23 shows how tickets
that are in progress should be worked on. The workflow for

”
To Review“ and

”
In Review“ is shown in Figure 24 and the workflow for finalizing a ticket is
described in Figure 25.

46

Figure 21: The states of an issue as represented in the Jira board.

Figure 22: Sprint planning workflow

47

Figure 23: Work in Progress workflow

48

Figure 24: To Review and In Review workflow

49

Figure 25: In Acceptance workflow

12.4 Defintion of Done

A ticket is considered done if the following requirements are fulfilled:

• Functionality implemented

• Reproducibly tested

• Documented

• At least three persons were involved in implementation and review, at
least one of them is only a reviewer

• All acceptance criteria are met

• Accepted by PO or BE

12.5 Roles

The project group consists of eleven students. Each member is a developer, but
some also fulfill different roles or focus on certain topics. These roles with the
member’s names inside this project are listed below.

• Scrum Master (Carl Schneiders)

50

– Ensures conformity to scrum practices

– Maintains the team’s processes and takes care of removing obstacles
in the process

– Organizes retrospectives.

• Product Owner (Marie Marken)

– Creates and maintains the product vision in consultation with the
group and other interested parties.

– Communicates with BTC ES, Foundations and Applications of Sys-
tems of Cyber-Physical-Systems and Distributed Control in Intercon-
nected Systems

– Maintains the backlog and organizes feature planning

– Leads sprint planning and sprint review

• Business Engineer (Lasse Heckelmann)

– Supports the Product Owner in her tasks

– Keeps track of the project

– Provides a point of contact for specialized questions

• Documentation Steward (Nellson Eilers)

– Keeps track of the internal wiki

– Makes sure that everyone documents their work

– Ensures that conventions regarding the documentation are adhered
to

• Infrastructure (Malte Grave)

– Maintains the server infrastructure

– Makes sure that everyone can work

– Also offers technical support

• Code Steward (Jan-Magnus Monenschein)

– Ensures that the code quality is of the desired level

– Specifies rules and principles for working on the code base

– Helps with all things CI/CD

– Helps with configuring and working with development tools

• Technical Lead (Simon Struck)

– Has an oversight over the whole system

– Responsible for creation/management of datatransfer protocols

51

– Evaluates technical feasibility

• Quality Analysis (Filip Wojciak)

– Ensures product functionality

– Tasked with testing of the product

– Ensures fulfillment of requirement

• Developer (Julia Debkowski)

– Assists with software development

– Keeps track of the project’s progress

• Software Architect (Stefan Gerber)

– Maintains the architecture

– Is a contact for architectural questions

• PR work (Paulina Kowalska)

– Responsible for public work

– Responsible for planning events

12.6 Tools

For easier collaboration, using a few tools proved to be essential. Below, some
of these tools are presented.

12.6.1 Jira

Jira is a popular project management and issue tracking tool developed by At-
lassian. Jira helps to manage tasks efficiently, maintain transparency, adapt to
different project methodologies and collaborate effectively.
Jira allows teams to create, track, and manage issues, tasks, bugs, and user sto-
ries. This helps in maintaining a clear and organized list of work items, making
it easier to prioritize and address them. Also, Jira supports agile methodologies
like Scrum. It provides features such as sprint planning, backlog management,
and burndown charts to facilitate agile processes.
Furthermore, Jira is highly customizable. This enables the ability to have cus-
tom workflows, issue types, and fields to tailor it to a project’s specific needs.
Another important aspect is that Jira can integrate with a wide range of tools,
including source code repositories (e.g. Gitlab), CI/CD pipelines and more.

12.6.2 Discord

Discord is used for communication within the team. A custom bot called Hugo
is used, which partially automates processes. Particularly, he reminds the group
of the internal weekly deadline, helps with the estimation process of user stories
and can be used to list current merge requests and their review status.

52

12.6.3 Gitlab

Versioning is essential. Gitlab is used for this purpose. Repositories for the
following projects exist.

• the internal wiki

• the website

• everything related to public relations

• the project report

• the server configuration

• and of course the TurtleCar implementation itself

12.6.4 Google Calendar

To keep track of important dates Google Calendar is used. Here all appoint-
ments as well as vacations are entered.

12.6.5 Etherpad

Etherpad is used to share notes and to keep the agenda for meetings.

53

13 Public Relations

In this section, the presentation to the public will be addressed. This will cover
tasks performed during participation in events like the FleiWa, as well as the
management of the project group’s online presence, including a website and
Instagram account.

13.1 Quartierstag

Figure 26: Presentation at the Quartierstag

At the
”
Alte Fleiwa“ neighborhood, as part of its 100th-anniversary celebration

the
”
Quartierstag“ was held. Here a first major milestone, the Lane Keeping

Assistant, was presented. This can be seen in Figure 26. During this event,
local businesses, research institutions, organizations, and municipal offices pro-
vided insights into their work. More information can be found on the following
link: https://quartierstag.de/ On behalf of the University and BTC-ES,
current findings were presented, a live demonstration was offered, a poster as
seen in Figure 27 was created and the opportunity to examine hardware and
software, including the Visualizer was given.

54

https://quartierstag.de/

Figure 27: Overview of the poster for the Quartierstag.

13.2 Website

In today’s world, it is of paramount importance to establish an online presence.
To this end, a digital presence was created. First, an Instagram account exists,
which will be actively curated in the near future. What is already accessible
by the public is the website. The project’s website displays the most important
information for the public. Its public domain is https://itraffic-uol.de/.

The website is a good way to document the progress being made over time
and to also show it to stakeholders. The content should primarily address the
goals of the project group. Progress should be documented as well as challenges
to avoid or not to repeat possible mistakes. The team represents the basic
building block of the project group and is therefore presented. This way, even
strangers who have nothing to do with the project group can build a good
understanding of it.

13.2.1 Dependencies

The following tools are used to create the website:

55

https://itraffic-uol.de/

• Jekyll (Static Site Generator)

• Minimal Mistakes Theme for Jekyll

• Ruby Bundler in order to manage the projects dependencies

• Gitlab CI/CD for building and deploying the site automatically

13.2.2 Content Review Policy

Since the content affects everyone and appears online, changes should be ap-
proved by everyone in advance. Joint reviews are mandatory.

13.3 Email

The teams public email address is: team@itraffic-uol.de

13.4 Instagram

The project group’s Instagram channel can be found here: https://www.inst
agram.com/pg_itraffic/

The Instagram channel is a bit more informal and is intended to represent the
project group away from the achievement of goals. For this purpose, insights into
meetings but also social events can be shared. Regularity to post is secondary.

References

[1] Author automaticaddison. Sensor fusion using the robot localization pack-
age - Ros 2. Dec. 2021. url: https://automaticaddison.com/sensor-
fusion-using-the-robot-localization-package-ros-2/ (visited on
10/08/2023).

[2] Uli Baumann. Die Räder stehen fast quer. July 2022. url: https://
www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-

extrem-lenkung/ (visited on 10/08/2023).

[3] More BHP. VW MK7 Golf GT 2.0TDI 150 ECU Remap. url: https:
//www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-

20tdi-150-ecu-remap.html (visited on 10/08/2023).

[4] Black Python Formatter GitHub Repository. Oct. 2023. url: https://
github.com/psf/black (visited on 10/07/2023).

[5] Philipp Borchers et al. Realtime Controlled Cooperative Autonomous Rac-
ing System next generation. Checked 2023-10-05. Apr. 2018. url: https:
//uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.

pdf (visited on 10/08/2023).

[6] Nikolai Bräuer et al. Realtime Controlled Cooperative Autonomous Racing
System. Nov. 2016. url: https://uol.de/f/2/dept/informatik/
download/studium/pg/PG_RCCARS.pdf (visited on 10/05/2023).

56

https://www.instagram.com/pg_itraffic/
https://www.instagram.com/pg_itraffic/
https://automaticaddison.com/sensor-fusion-using-the-robot-localization-package-ros-2/
https://automaticaddison.com/sensor-fusion-using-the-robot-localization-package-ros-2/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://github.com/psf/black
https://github.com/psf/black
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/studium/pg/PG_RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/studium/pg/PG_RCCARS.pdf

[7] Bremsen. url: https : / / vorschriften . bgn - branchenwissen . de /

daten/dguv/70/19.htm (visited on 10/08/2023).

[8] Bremswege im Vergleich. Oct. 2019. url: https://www.adac.de/rund-
ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/ (visited
on 10/08/2023).

[9] Bundesrepublik Deutschland. Straßenverkehrsordnung. 2013. url: https:
//www.gesetze-im-internet.de/stvo_2013/ (visited on 10/08/2023).

[10] Rüdiger Cordes. cw-Werte. 2022. url: http://rc.opelgt.org/indexcw.
php (visited on 10/08/2023).

[11] Yan Ding. Simple Understanding of Kinematic Bicycle Model. Nov. 2021.
url: https://www.shuffleai.blog/blog/Simple_Understanding_of_
Kinematic_Bicycle_Model.html (visited on 10/08/2023).

[12] DSG Shift Time. June 2007. url: https://www.vwvortex.com/threads/
dsg-shift-time.3311040/ (visited on 10/08/2023).

[13] PG EmBrAAC. Projektgruppe Emergency Braking Assistant for fully Au-
tonomous Cars. Sept. 2019.

[14] Brian Fitzgerald and Klaas-Jan Stol. “Continuous software engineering:
A roadmap and agenda”. en. In: Journal of Systems and Software 123
(Jan. 2017), pp. 176–189. issn: 01641212. doi: 10.1016/j.jss.2015.
06.063. url: https://linkinghub.elsevier.com/retrieve/pii/
S0164121215001430 (visited on 10/07/2023).

[15] ROS 2 Real-TimeWorking Group. Raspberry Pi image with ROS 2 and the
real-time kernel. 2023. url: https://github.com/ros-realtime/ros-
realtime-rpi4-image (visited on 10/04/2023).

[16] International Organization for Standardization. Intelligent transport sys-
tems — Lanekeeping assistance systems (LKAS) —Performance require-
ments and testprocedures. Tech. rep. 2014. url: https://www.iso.org/
obp/ui/en/#iso:std:iso:11270:ed-1:v1:en (visited on 10/08/2023).

[17] PG iTraffic. TurtleBot 3 Image Builder. 2023. url: https://gitlab.
itraffic-uol.de/itraffic/TurtleBot3-image-builder (visited on
10/04/2023).

[18] Holger Krekel. pytest Documentation. docs.pytest.org, Oct. 2023. url:
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/

pytest.pdf (visited on 10/04/2023).

[19] Lane departure warning system. url: https://en.wikipedia.org/wiki/
Lane_departure_warning_system (visited on 10/05/2023).

[20] Baurzhan Muftakhidinov Mark Mitchell and Tobias Winchen et al. En-
gauge Digitizer Software. url: http://markummitchell.github.io/
engauge-digitizer (visited on 10/08/2023).

[21] mockito-python GitHub Repository. Oct. 2023. url: https://github.
com/kaste/mockito-python (visited on 10/04/2023).

57

https://vorschriften.bgn-branchenwissen.de/daten/dguv/70/19.htm
https://vorschriften.bgn-branchenwissen.de/daten/dguv/70/19.htm
https://www.adac.de/rund-ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/
https://www.adac.de/rund-ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/
https://www.gesetze-im-internet.de/stvo_2013/
https://www.gesetze-im-internet.de/stvo_2013/
http://rc.opelgt.org/indexcw.php
http://rc.opelgt.org/indexcw.php
https://www.shuffleai.blog/blog/Simple_Understanding_of_Kinematic_Bicycle_Model.html
https://www.shuffleai.blog/blog/Simple_Understanding_of_Kinematic_Bicycle_Model.html
https://www.vwvortex.com/threads/dsg-shift-time.3311040/
https://www.vwvortex.com/threads/dsg-shift-time.3311040/
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
https://github.com/ros-realtime/ros-realtime-rpi4-image
https://github.com/ros-realtime/ros-realtime-rpi4-image
https://www.iso.org/obp/ui/en/#iso:std:iso:11270:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:11270:ed-1:v1:en
https://gitlab.itraffic-uol.de/itraffic/TurtleBot3-image-builder
https://gitlab.itraffic-uol.de/itraffic/TurtleBot3-image-builder
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf
https://en.wikipedia.org/wiki/Lane_departure_warning_system
https://en.wikipedia.org/wiki/Lane_departure_warning_system
http://markummitchell.github.io/engauge-digitizer
http://markummitchell.github.io/engauge-digitizer
https://github.com/kaste/mockito-python
https://github.com/kaste/mockito-python

[22] Quang-Cuong Pham. “Trajectory Planning”. en. In: Handbook of Manu-
facturing Engineering and Technology. Ed. by Andrew Y. C. Nee. Lon-
don: Springer London, 2015, pp. 1873–1887. isbn: 978-1-4471-4669-8 978-
1-4471-4670-4. doi: 10.1007/978- 1- 4471- 4670- 4_92. url: https:
//link.springer.com/10.1007/978-1-4471-4670-4_92 (visited on
10/04/2023).

[23] Ruff Python Linter GitHub Repository. Oct. 2023. url: https://github.
com/astral-sh/ruff (visited on 10/07/2023).

[24] Scrum.org. What is Scrum? 2023. url: https : / / www . scrum . org /

learning-series/what-is-scrum (visited on 10/08/2023).

[25] Forschungsgesellschaft für Straßen- und Verkehrswesen, ed. Richtlinien
für die Markierung von Straßen. Teil A: Autobahnen. ger. Ausgabe 2019.
FGSV 330A. Cologne: Forschungsgesellschaft für Straßen- und Verkehr-
swesen e.V, 2019. isbn: 978-3-86446-251-1.

[26] Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles. Apr. 2021. url: https://www.sae.
org/standards/content/j3016_202104/ (visited on 10/05/2023).

[27] Vehicle acceleration and maximum speed modeling and simulation. url:
https://x-engineer.org/vehicle-acceleration-maximum-speed-

modeling-simulation/ (visited on 10/08/2023).

58

https://doi.org/10.1007/978-1-4471-4670-4_92
https://link.springer.com/10.1007/978-1-4471-4670-4_92
https://link.springer.com/10.1007/978-1-4471-4670-4_92
https://github.com/astral-sh/ruff
https://github.com/astral-sh/ruff
https://www.scrum.org/learning-series/what-is-scrum
https://www.scrum.org/learning-series/what-is-scrum
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/

	Product Vision
	Autonomous Driving Functions
	Functions of the Non-Autonomous Vehicle

	State of the Art
	Levels of Automotive Autonomy
	Assisted Driving Functions
	Lane Departure Warning System LDWS23

	Related Projects

	Environment
	Model
	Differences between Gazebo and Real-Life

	Vehicle Emulation
	Vehicle Model
	Motor Model

	Vehicle Configuration
	Engine
	Transmission
	Wheels
	Vehicle Dynamics
	VW Golf VII
	Model information
	Notes for parameters
	Further Sources

	Jaguar F-Type
	Model information
	Notes for parameters

	Sensor Augmentations
	Camera
	Camera Service
	Camera Mount

	Odometry

	TurtleCar-Core
	TurtleCar Node
	Architecture
	TurtleCarNode Core Loop
	Filtering Sensor Values
	Unit Testing

	TurtleBot ROS2 Image

	Code Quality
	SCA
	Development Tools
	Continuous Integration
	Integration in the workflow with CI
	Pipeline

	Lane Detection
	LIDAR-Based Lane Detection
	Preconditions
	Coordinate Transformation
	Boundary Detection and Lane Projection
	Current Lane Determination

	Camera-Based Lane Detection

	Path Planning
	Definitions and Context
	Implementation
	Processing the Lane Data
	Sanitizing the Lanes
	Enhancing the Lanes
	Planning the Path
	Example images

	Writing a custom Path Planner

	TurtleCar-Test
	Structure
	Requirements
	Test Case Configuration and Requirements Capturing
	Execution
	Implementation Roadmap

	Driving Functions
	Lane Keeping Assistant
	General Requirements
	Functional Requirements
	Non-Functional Requirements
	Additional Information
	Implementation

	Adaptive Cruise Control
	General Requirements
	Functional Requirements
	Non-Functional Requirements

	Organization
	Milestones and Timeline
	Sprint-flow
	Sprint Workflow
	Defintion of Done
	Roles
	Tools
	Jira
	Discord
	Gitlab
	Google Calendar
	Etherpad

	Public Relations
	Quartierstag
	Website
	Dependencies
	Content Review Policy

	Email
	Instagram

