
PG iTraffic with TurtleBots:

Project Report

Debkowski, Julia
Eilers, Nellson
Gerber, Stefan
Grave, Malte

Heckelmann, Lasse
Kowalska, Paulina
Marken, Marie

Monenschein, Jan-Magnus
Schneiders, Carl
Struck, Simon
Wojciak, Filip

April 3, 2024

Contents

1 Product Vision 1

1.1 Autonomy Levels . 1

1.2 Functions of the Non-Autonomous Vehicle 2

1.2.1 Functions of the Partially Automated Vehicle 2

1.2.2 Functions of the Highly Automated Vehicle 2

2 State of the Art 5

2.1 Levels of Automotive Autonomy 5

2.2 Related Projects . 6

3 Used Software and Hardware 9

3.1 TurtleBot3 . 9

3.2 Additional Sensors . 10

3.2.1 GPS Sensor . 10

3.2.2 Compass . 10

3.2.3 Temperature Sensor . 10

3.3 Gazebo . 11

3.4 ROS 2 . 11

4 Reflecting Reality 13

4.1 Real Environment . 13

4.1.1 TurtleBot 3 Burger . 13

4.1.2 Golf VII . 15

4.1.3 Road Model . 15

4.2 Scaling Approaches . 15

4.2.1 Settling on a Strategy . 16

4.2.2 Disadvantages of the Chosen Strategy 18

4.3 Scaling Reality . 19

4.3.1 Resulting Environment 19

4.3.2 Using the Scaling in the TurtleCar-Software 21

4.4 Differences between Gazebo and Reality 21

4.5 Terms of Safety . 22

4.5.1 Front Back Clearance . 22

4.5.2 Lateral Clearance . 22

4.5.3 Guidelines for the vehicle 22

3

5 Vehicle Emulation 25
5.1 Idealized Mathematical Vehicle Model 25
5.2 Emulated Mathematical Vehicle Model 26

5.2.1 Motor Model . 27
5.2.2 Steering Angle Limiting 28

5.3 Vehicle Configuration . 29
5.4 Structure . 30
5.5 Examples . 31
5.6 Considered Mathematical Vehicle Models 33

5.6.1 Kinematic Bicycle Model in the Field of Mathematical
Vehicle Models . 33

5.6.2 Reasons for Choosing the Kinematic Bicycle Model 34
5.6.3 Discussion of other Vehicle Models 35
5.6.4 Possible Reasons for Choosing other Models than the Kine-

matic Bicycle Model . 35
5.6.5 Answering the Research Questions 36

6 Sensor Augmentations 39
6.1 Camera . 39

6.1.1 Camera Service . 39
6.1.2 Camera Mount . 40

6.2 Kalman Filter . 41
6.3 Sensor Fusion . 45

7 TurtleCar-Core 47
7.1 TurtleCar Node . 47

7.1.1 Architecture . 47
7.1.2 TurtleCarNode Core Loop 48
7.1.3 Filtering Sensor Values 50
7.1.4 Unit Testing . 50

7.2 TurtleCar-Core Coordinate System 50
7.2.1 Local Coordinate System 50
7.2.2 Global Coordinate System 51

7.3 TurtleBot ROS2 Image . 52
7.4 TurtleBot ROS2 packages . 53
7.5 TurtleBot Bringup . 53
7.6 ROS2 WiFi network with TurtleBots 53

8 Code Quality 55
8.1 SCA . 55
8.2 Development Tools . 55
8.3 Continuous Integration . 56

8.3.1 Integration in the workflow with CI 56
8.3.2 Pipeline . 56

9 Lane Detection 59
9.1 LIDAR-Based Lane Detection . 59

9.1.1 Preconditions . 59
9.1.2 Coordinate Transformation 59
9.1.3 Boundary Detection and Lane Projection 60

9.2 Camera-Based Lane Detection 60
9.2.1 Classical Computer Vision Approach 61
9.2.2 AI Enhanced Implementation 62
9.2.3 Preconditions . 62
9.2.4 Bird’s-eye View Transformation 64
9.2.5 Lane Data Processing . 64
9.2.6 Advantages and Limitations 64

9.3 Current Lane and Relative Position in Lane Calculation 65

10 Object Detection 67
10.1 LIDAR-Based Obstacle Detection 67
10.2 Camera Based Object Detection 71

10.2.1 Marker Systems . 72
10.2.2 ArUco Marker . 72
10.2.3 Environment Preparation 72
10.2.4 Marker Detection . 74
10.2.5 Road Sign Detection . 75
10.2.6 Obstacle Tracking . 75
10.2.7 Obstacle History . 76
10.2.8 Determining Relative Velocities 76

11 Path Planning 79
11.1 Definitions and Context . 79
11.2 Implementation . 79

11.2.1 Planning the Path . 80
11.2.2 Example images . 80

12 Testing driving functions 83
12.1 Testing Concept . 83

12.1.1 Preliminaries . 83
12.1.2 Approach used in the Group 84

12.2 Testing with Real TurtleBots . 84
12.2.1 Approach 1: Fully Manual Testing 84
12.2.2 Approach 2: Bird’s Eye View Camera 85

12.3 Testing in the simulation . 85

13 TurtleCar-Test 87
13.1 Traffic Sequence Charts . 87
13.2 Architecture . 88

13.2.1 Trigger-System . 88
13.3 Timers . 91
13.4 State Machine . 92

13.4.1 Scenario . 92
13.4.2 Robot . 93
13.4.3 Obstacles . 94
13.4.4 Simulated Driver . 95
13.4.5 Gazebo integration . 95

13.5 Implementation of TurtleCar-Test 96
13.6 Future expansions . 96

14 Architectural Concepts 99
14.1 Autonomy Level Architecture . 99

14.1.1 Manual Driving and Partial Autonomy 99
14.1.2 Autonomous Driving . 100

14.2 Model Predictive Control . 103
14.2.1 The Model Predictive Control Algorithm 104
14.2.2 Implementation . 106

15 Situational Awareness 111
15.1 Emergency Detector . 111
15.2 Lane Change Safety . 111

15.2.1 Strategy . 112
15.2.2 Implementation of the Obstacle Avoidance Strategy . . . 114
15.2.3 Testing . 116

15.3 Obstacle Overtaking Safety and Road Rules Adherence 121
15.3.1 Introduction . 121
15.3.2 Implementation . 122
15.3.3 Scenarios . 122

16 Driving Functions 125
16.1 Manual Driving . 125
16.2 Lane Keeping Assistant . 125

16.2.1 General Requirements . 126
16.2.2 Functional Requirements 126
16.2.3 Non-Functional Requirements 128
16.2.4 Additional Information 128
16.2.5 Implementation . 129
16.2.6 Tests . 132

16.3 Adaptive Cruise Control . 134
16.3.1 General Requirements . 134
16.3.2 Functional Requirements 135
16.3.3 Non-Functional Requirements 137
16.3.4 Implementation . 138
16.3.5 Tests . 139

16.4 Lane Change Assistant . 141
16.4.1 General Requirements . 142
16.4.2 Functional Requirements 142
16.4.3 Implementation . 144
16.4.4 Tests . 146

16.5 Obstacle Avoidance . 147
16.5.1 Requirements . 147
16.5.2 Implementation . 149

16.6 Overtaking . 149
16.6.1 Requirements . 150
16.6.2 Implementation . 151
16.6.3 Tests . 151

16.7 Platooning . 153
16.8 Constraints on Driving Function 159

16.8.1 Classic Approach . 159
16.8.2 Model Predictive Control Approach 160

17 Scenarios 161
17.1 Main Scenario . 161
17.2 Rogue Actor . 162

17.2.1 Scenario 1: Unexpected Lane Change 162
17.2.2 Scenario 2: Unexpected Braking 163

18 Organization 165
18.1 Milestones and Timeline . 165
18.2 Sprint-flow . 166
18.3 Sprint Workflow . 167
18.4 Defintion of Done . 171
18.5 Roles . 171
18.6 Tools . 172

19 Public Relations 175
19.1 Quartierstag . 175
19.2 Website . 176

19.2.1 Dependencies . 177
19.2.2 Content Review Policy . 177

19.3 Email . 177
19.4 Instagram . 177

20 Outlook 179
20.1 Driving Functions . 179
20.2 TurtleCar-Test . 181
20.3 TurtleCar-Core . 182

21 Conclusion 185

Chapter 1

Product Vision

The goal of the project group iTraffic with TurtleBots is to develop autonomous
driving functions with TurtleBot (TB)s to solve scenarios of varying complexity
based on a German autobahn without curves. To assure that these driving
functions meet their specifications, test-based validation is used.

The project group uses the TB platform as a basis. This makes it possible
to experimentally validate autonomous driving functions in different simulated
traffic scenarios with the use of mostly low-cost sensor technology. The goal
is to present and tackle the challenges of autonomous driving in a way that is
cost-effective and low-risk.

In order to achieve this, a platform for creating autonomous driving functions
based on the TB is developed. It enables members of the project group as well
as future developers to implement controllers for vehicles on different autonomy
levels and simulating those vehicles on a TB. This platform is called TurtleCar.

Additionally, TurtleCar provides capabilities to validate the controllers in a
simulated as well as a real life environment. For this, a Domain Specific Lan-
guage (DSL) to define test cases for the controllers is developed. The simulation
suite

”
Gazebo“ is used for testing in a simulated environment. Using the simu-

lation, it is possible to automatically execute test cases, gather the results and
determine whether the test conditions where met. TurtleCar ensures that both
environments behave similarly with regard to the inputs and outputs of the
controller.

Using the TurtleCar platform, several scenarios of various complexities are
developed and provided, and from those, test cases for the testbed are derived.
This enables a developing cycle that is closely related to the DevOps method:
The development of the testbed follows the requirements posed by the scenarios,
and can be adjusted as needed.

1.1 Autonomy Levels

The scenarios developed as part of this project group are all be based on a
highway with the properties of a German autobahn without curves. Controllers
with three different levels of autonomy are built:

• no autonomy

1

• partially automated

• highly automated

The driving functions used by these levels are implemented using suitable,
robust control strategies. They are based on the current state of the art in the
control engineering domain.

1.2 Functions of the Non-Autonomous Vehicle

The non-autonomous vehicle has no assistance systems. In the non-autonomous
vehicle, a human driver controls the vehicle completely. They can define the
speed and the steering angle, and the bot moves according to the vehicle’s
dynamics.

1.2.1 Functions of the Partially Automated Vehicle

The partially automated vehicle can perform certain functions autonomously
within bounded conditions. It may call for the driver’s intervention if needed.

Lane Keeping Assistant The driver determines the speed of the vehicle. As
long as the Lane Keeping Assistant (LKA) is activated, the vehicle keeps to the
center of its current lane without the need of the driver to control the steering
angle.

Adaptive Cruise Control The maximum speed of the vehicle is determined
by the driver. When Adaptive Cruise Control (ACC) is activated, and another,
slower vehicle is driving in the front, the speed is adjusted so that a safety
margin is kept.

Lane Changing When the Lane Changing function is engaged, if conditions
permit, the vehicle executes lane changes, while maintaining appropriate spacing
from neighboring vehicles.

Collision Avoidance System The vehicle avoids static obstacles like road
works by changing lanes or stopping safely before the obstacle until a safe lane
changing is possible.

Overtaking The vehicle avoids obstacles moving in the same lane, like a
slower car ahead, by changing lanes or reducing speed until a safe lane changing
is possible.

1.2.2 Functions of the Highly Automated Vehicle

The highly automated vehicle is able to drive on the highway without need-
ing intervention from the driver. All actions are self-initiated. Using only the
aforementioned driving functions, it moves the vehicle forward as safely as pos-
sible without any input from the driver while adhering to the German traffic
regulations in terms of safety margins. Also, it adheres to speed limits and

”
no

overtaking“ road signs.

2

Malicious Agent Avoidance The vehicle avoids collisions with cars which
are moving in defiance of traffic rules by choosing a safe driving strategy.

Platooning In platooning mode, the vehicle joins a closely coordinated group
of vehicles traveling in a convoy-like formation. The system automatically con-
trols the vehicle’s speed, following distance, and positioning within the platoon.
The platooning system continuously communicates with other vehicles in the
group, ensuring safe and efficient travel.

3

4

Chapter 2

State of the Art

This section introduces the autonomy levels according to the Society of Automo-
tive Engineers (SAE), shows the group’s ongoing research on driving functions,
and outlines past projects working on similar topics.

2.1 Levels of Automotive Autonomy

The SAE defines levels of autonomy in on-road automated driving vehicles. The
SAE standard J3016 202104 [86] outlines the six levels of driving automation,
ranging from Level 0 (no automation) to Level 5 (full automation) depicted
in Table 2.1 as follows.

Table 2.1: Levels of driving automation according to the SAE standard
J3016 202104 [86]

Level Description
Level 0 No Driving Automation
Level 1 Driver Assistance
Level 2 Partial Driving Automation
Level 3 Conditional Driving Automation
Level 4 High Driving Automation
Level 5 Full Driving Automation

While level 1 − 2 use
”
driver support“ features, level 3 − 5 use

”
automated

driving“ features. The level of driving automation of a vehicle is determined by
a combination of factors: the extent of required human involvement in driving
tasks, the vehicle’s capability to perform driving functions, and the operational
design domain under which a feature is designed to function (i. e. environmental
restrictions). The standard also differentiates between three types of actors: the
(human) user, the driving automation system, and other vehicle systems and
components.

Because of this, systems that provide alerts about driving hazards are ex-
cluded from this classification as they neither automate driving tasks nor change
the driver’s role in performing them. Additionally, the LKA, the electronic sta-
bility control or other certain types of driver assistance systems are not covered

5

by this driving automation classification. This is because it provides momentary
intervention rather than sustained automation of driving tasks.

2.2 Related Projects

In the past, there were several projects from the Carl von Ossietzky University
of Oldenburg who dealt with implementing driving functions on hardware rep-
resenting a vehicle. In the following, these will be described and distinguished
from the project group.

”
Realtime Controlled Cooperative Autonomous Racing System“ (RCCARS)

has undertaken the task to develop a safety-critical system using the racetrack
Mini-Z Grand Prix Circuit 30 and RC-Cars from Kyosho. This system is re-
sponsible for observing and controlling autonomously operating vehicles on a
racetrack. In their

”
collision-free“ scenario, a single car is supposed to au-

tonomously complete five laps on the racetrack at a minimum average speed of
1.5 m/s without colliding with the track’s boundaries [11].

”
Realtime Controlled Cooperative Autonomous Racing System Next Gener-

ation“ (RCCARSng) builds upon the work of RCCARS. It extends the project
by adding a second car and several static obstacles. Both cars are supposed to
complete a minimum of ten collision-free laps. During this, both vehicles have
the opportunity to overtake each other and should avoid obstacles while doing
so. This group divides their scenario

”
collision-free overtaking“ in the following

three variants [9].

• One vehicle following the other.

• One vehicle overtaking the other.

• Following and overtaking while avoiding obstacles.

RCCARS and RCCARSng both use global knowledge and external calcu-
lations. A camera situated above the racetrack perceives the track and the
vehicles on the track. There exists an external component responsible for loca-
tion determination and for controlling the vehicles. For the overtaking function,
they use a preceding trajectory calculation implemented in Matlab.

”
Emergency Braking Assistant for fully Autonomous Cars“ (EmBrAAC) has

undertaken the task to develop a real-time vehicle assistant. Depending on the
situation, it should be capable of calculating an evasive strategy or performing
emergency braking. They use a remotely-controlled vehicle from Traxxas in
combination with a predefined and self-build course. Their focus lies on real-
time capabilities and contract-based design [23].

Within the context of the university course
”
Forschendes Lernen - Mobiles

Multiagenten-Robotersystem“ eight students investigated and practically im-
plemented method-oriented topics in the field of mobile robotic systems using a
TB. The course was meant as a preliminary project for the

”
iTraffic with Turtle-

Bots“ project group and was attended by some people from this project group.
They familiarized themselves with the simulation software Gazebo and used it
to validate initial prototypes before transferring them into real hardware. After
doing some fundamental work with the TB and Gazebo software, the students
were split into two groups.

6

One group focused on using Simulink to address the question
”
How can an

autonomous driving function for obstacle avoidance be developed?“. As part
of this, they developed control algorithms that enable the robot to follow the
desired path, navigate around obstacles, and perform precise navigation.

The other group, using Python, explored the question
”
How is realistic driv-

ing behavior simulated?“. In doing so, they researched vehicle models and
implemented a suitable one. This included considering factors such as friction,
inertia, road conditions, and other physical properties.

During the course, Simulink and Python were compared for the implementa-
tion of driving functions on a TB. The project group adopted the Mathematical
Vehicle Model (MVM) and knowledge about the differences between reality and
Gazebo simulation.

In comparison to these related projects, the project group
”
iTraffic with

TurtleBots“ enables the utilization and implementation of driving functions on
a TB based on local knowledge. The implemented driving functions use a cam-
era und a LIDAR sensor on the TB. These sensors can be combined freely. The
environment in which the TB operates and the TB itself closely resemble real-
ity: The TB is located on a three-lane highway and behaves like a specific car.
The goal is to develop a modular development platform. That means vehicle
models, environments and driving functions can be added and are interchange-
able. Alongside the creation of the development platform, an automated testing
platform is created. This allows experimentally validating the driving functions.

7

8

Chapter 3

Used Software and
Hardware

The creation of the project was conducted using various software such as Gazebo
and ROS2. Hardware such as the TB and its eqquiped sensors was also em-
ployed. This chapter gives brief insights into the used hardware and software.

3.1 TurtleBot3

The TurtleBot3 Burger is a popular and versatile open-source robot platform de-
signed for education, research, and hobbyist applications. Developed by ROBO-
TIS, it provides a low-cost, customizable solution for learning and experimenting
with robotics. The TB consists of two computational boards: a Raspberry Pi
4 and the OpenCR Board. In addition, the TB is equipped with different sen-
sors [93].

Raspberry Pi 4 The Raspberry Pi 4 serves as the host on which a realtime
Linux based operating system is running. The entire network communication is
executed on the Raspberry Pi 4, this also includes components from the software
stack [71].

OpenCR 1.0 The OpenCR board is an open source board which is used to
control the actuators and read sensors from the board. It is also possible to
connect additional sensors directly. The entire voltage of the system is also
managed via this board. The firmware is based on the Arduino framework and
can be customized by any needs [91].

The TB is delivered with differently equipped sensors. The main sensors are
the LIDAR (Light Detection and Ranging) and a Raspberry camera.

LIDAR The LIDAR is not directly connected to the OpenCR board. It is
indeed connected to the Raspberry Pi 4 over a RS232 transducer board, which
itself is connected to the USB port of the Raspberry Pi 4. There are different
versions of the TB LIDAR, the used TB has the LIDAR LDS-2 equipped [90].

9

Camera The used camera is an RASP CAM 3, which is directly connected
to the CSI (Camera Serial Interface) port of the Raspberry Pi 4. It features a
12-MP image sensor and a max resolution of 1080p@50Hz [70].

3.2 Additional Sensors

The integration of various additional sensors such as a GPS sensor, a compass,
and a temperature sensor greatly enhances the capabilities and functionality of
a TurtleBot3, making it suitable for a wide range of scenarios in different envi-
ronments. The additional sensors were purchased in order to describe further
scenarios, but since integrating was not a priority they are currently unused.

3.2.1 GPS Sensor

The GPS sensor on a TurtleBot3 enables precise localization and navigation
in outdoor environments. Here are some scenarios where a GPS sensor proves
invaluable:

Autonomous Navigation The GPS sensor allows the TurtleBot3 to navigate
autonomously in outdoor spaces by providing position information. This is
particularly useful in scenarios where field monitoring is required.

Mapping and Exploration With GPS data, the TurtleBot3 can create maps
of outdoor environments.

3.2.2 Compass

The compass sensor provides orientation information, allowing the TurtleBot3
to maintain direction and navigate accurately. Here’s how it can be utilized:

Heading Control In scenarios where maintaining a specific heading is crucial,
the compass sensor ensures the TurtleBot3 stays on course even in the absence
of visible landmarks or GPS signal, providing reliable navigation in challenging
environments.

Calibration Assistance The compass sensor aids in calibration procedures,
ensuring the accuracy of other sensors onboard the TurtleBot3, particularly
in scenarios where precise sensor fusion is required for navigation or mapping
applications.

3.2.3 Temperature Sensor

The temperature sensor provides environmental data crucial for various appli-
cations. Here’s how it can be utilized:

10

Environmental Monitoring By measuring ambient temperature, the Turtle-
Bot3 can monitor environmental conditions in real-time, so scenarios can be
created for different temperatures, such as driving on an icy road.

In conclusion, the integration of a GPS sensor, a compass, and a temperature
sensor could expand the capabilities of a TurtleBot3, enabling it to operate in
diverse scenarios.

3.3 Gazebo

Gazebo is a free and open-source simulation tool that provides the ability to
efficiently simulate robots in custom indoor and outdoor environments. It offers
a robust physics engine and the ability to simulate various sensors and actuators.

Gazebo plays a critical role in testing and refining the algorithms for con-
trolling TurtleBots. The primary advantage of using Gazebo lies in its ability to
create realistic simulations that closely mimic the real world. This means the
project group could experiment with various scenarios and conditions that the
TurtleBots might encounter without needing access to large physical spaces for
testing. The creation of the project was conducted.

3.4 ROS 2

Robot Operating System (ROS) provides a framework for communicating be-
tween different components based on the Data Distribution Service (DDS),
which provides reliable communication in multi-robot systems [52]. The com-
munication is organized by creating nodes for each communication participant
which communicate over specified channels called topics. The messages that
can be sent over each topic are well-defined and known to all communication
participants. ROS also provides checking reliability properties of network mem-
bers by annotating each message with timestamps and defining properties to
topics in order to prevent messages to be exchanged with an undesirable delay
or message loss. The system can be used within one robot to coordinate dif-
ferent sensors and actuators as well as between different ROS nodes that can
reach each other over the same IP network [52].

A ROS network of several nodes and topics can be seen in XYZ. Here, the
Node A publishes messages Twist, which represent speed and angular velocity
in three dimensions each, to a topic cmd vel. The second Node B subscribes to
that topic and receives each message published to it.

Node A /cmd vel Node B
publish Twist subscribe

Figure 3.1: A simple ROS 2 network with two nodes communicating over a topic
using Twist messages.

Since the communication via topics is the method chosen for this project,
other features of ROS such as services and actions are not further discussed
here.

11

12

Chapter 4

Reflecting Reality

The driving functions to be developed and the used environment should be as
realistic as possible to allow accurate emulation of vehicles. For this purpose,
the environment has to be defined in a way that makes it usable in reality and
in a Gazebo simulation. This is done by scaling down the real environment,
the autobahn and its participants, to TB dimensions, which is described in
detail in this section. Furthermore, the safety measures employed should follow
those used on a German autobahn and be scaled accordingly. The following
terminology is defined for disambiguation.

Environment The scaled down environment used by TurtleCar. When pre-
fixed with real, specifically the real environment made of wooden panels and
cardboard is referenced. Respectively, the simulated environment targets the
Gazebo simulation.

Road Model The actual, real road parameters that are the origin of the
scaled down environment, i. e. the German highway.

Scaling Factor The factor by which a road model distance unit is scaled
down to the environment distance.

4.1 Real Environment

In this section, the technical details of the real counterparts used to create
the scaled down environment are described. More precisely, the TB 3 Burger
model, the Golf VII car model, and the road model of a German autobahn are
considered. These parameters are referenced in Section 4.3, where their values
are used to construct the scaled down environment.

4.1.1 TurtleBot 3 Burger

To emulate a car on the TB the technical details of the TB model are needed.
Even though a TB 3 Specifications Guide exists, the technical parameters were

13

determined empirically by the project group, to make a precise comparison be-
tween reality and specifications possible. The gathered data is depicted in Ta-
ble 4.1. The data from the specifications is depicted in Table 4.2. Please note
that this information does not apply when using the TB in the Gazebo environ-
ment.

The value column corresponds with the value which is provided through the
/cmd vel topic. Anything below or above the min / max values will be ignored
by the TB. Position / Speed accuracy for the odometer was not collected because
the /odom topic already returns a covariance matrix indicating the accuracy of
the measurement.

Table 4.1: Experimentally determined TB 3 Burger parameters

Parameter Value(s) Notes

Velocity [0.01, 0.22)
Velocity Increment 0.01
Turn Velocity [0.01, 2.64)
min. Turn Velocity (unreliable) 0.01 irregular speed, stuttering
min. Turn Velocity (reliable) 0.1
Turn Velocity Increment 0.01 not 100% certain

The specification defines the following technical parameters for the TB 3
Burger model [73]:

Table 4.2: TB 3 parameters from specification

Parameter Value

Max. Velocity 0.22 m/s
Max. Turn Velocity 2.84 rad/s (162.72 deg/s)
Size (Length, Width, Height) 138 mm, 178 mm, 192 mm

The minimal speed increment of 0.01 m/s poses a problem for the velocity
calculations inside the Transposer component of TurtleCar Core. The problem is
that the transposer is calculating a new TB velocity every time step to simulate
a correct acceleration. If the calculated velocity step for a given time step is
smaller than 0.01 m/s then the TB doesn’t change its velocity for the current
time step. The current velocity vk is used to calculate the velocity for the next
time step vk+1 using the formula:

vk+1 = vk + ak · T
Where ak is the current acceleration and T is the length of the time step.

For a constant T and very lowak, this would conclude that the TB would not
increase in speed. To counteract this issue, the transposer is saving the remain-
ing velocity part vr which is not handled by the TB until the next time step
and adds this part to the velocity calculation.

vk+1 = vk + vr + ak · T
This ensures that after enough time steps the TB will reach a velocity step

greater than 0.01m/s, that can be executed.

14

4.1.2 Golf VII

Scaling the road model down to the representative environment will be primarily
done using a scaling factor derived from the size comparison between the TB
and a real VW Golf VII. The Table 4.3 depicts the required specifications of
said car model [87].

Table 4.3: Golf VII parameters

Parameter Value

Max. Velocity 69,44 m/s / 250 km/h
Size (Length, Width, Height) 4287 mm, 1789 mm, 1478 mm

4.1.3 Road Model

The used road model is based on a standard German highway. In general, the
measurements given in the Table 4.4 are used [85].

Table 4.4: German highway dimensions

Parameter Value

Lane Width 2.75 m - 3.75 m
Dash Mark Width normal 15 cm, broader 30 cm
Dash Mark Length 6 m
Dash Mark Spacing 12 m

4.2 Scaling Approaches

Initially the TurtleCar platform used only a single-factor scaling across all di-
mensions. This is unsatisfactory, since the TB differs in its aspect ratio regarding
a normal car.

If the TB should emulate a real car, its environment must be scaled down in a
consistent manner. The most basic scaling strategy sets the TB’s width, height
and top speed in relation to those of a reference car, like the Golf VII. This
results in the scale factors depicted in Table 4.5. This strategy is called

”
Three

Factor Scaling Strategy“ in the following.

However, this also results in three different scaling factors - which is unin-
tuitive and hard to follow for the development of driving functions. It would
essentially create three dimensions, with different relations between them. The
calculations would be made harder than necessary, and the goal of providing a
simple-to-use platform for developing driving functions would not be achieved.

Therefore, other scaling strategies have been developed in the project group,
which aim to provide similar results, but result in fewer amounts of scaling
factors. They are described in the following.

15

Table 4.5: Three Factor Based Scaling

Parameter Value Unit

Width TB 0.178 m
Width Golf VII (incl. Mirror) 2.073 m
Width Scale (X-Axis) 0.086

Length TB 0.178 m
Length Golf VII 2.073 m
Length Scale (Y-Axis) 0.086

Max Speed TB 0.178 m
Presumed Max Speed Golf VII 2.073 m
Speed Scale 0.086

Different Car This strategy would use the same three factors as above, but
compare the width, height and speed to a car which is closer in dimensions to
the TB. The assumption is that this would still result in different scaling factors
per dimension, but since they would be closer together, they would not differ in
relation to that of the TB quite as much, providing a more intuitive scaling at
least.

Change Maximum Emulated Speed For this, width and length factors
are calculated like before. However, the max speed of the considered car model
is artificially limited. This can manipulate the speed factor to be equal to the
length scale factor, keeping the number of scaling factors down at two.

Bot-As-Is This strategy essentially keeps the TB as it is. The approach of
scaling the TB to the dimensions of a real car would be discarded, subverting
the aspect of emulating a

”
real“ environment.

Width-Speed-Scaling This strategy calculates the same width and speed
scale factors as the

”
Three Factor Scaling Strategy“. The scaling factor for

length is set to be equal to the width scale factor. This results in a distortedly
scaled TB which is very short in theory, but it also employs only two scaling
factors.

4.2.1 Settling on a Strategy

First, the
”
Different Car“ is neglected since choosing a reference car that has a

very common aspect ratio is important to be able to emulate different cars. A
very specific but effectively rare car that has an aspect ratio closer to the TB
does not fit this reasoning. Also, the resulting factors were still not identical and
could have lead to inconsistencies. Second, the

”
Change Maximum Emulated

Speed“ would limit the maximum emulated speed to 22.35 km/h, which is not
feasible for the project group’s goals. Third, the

”
Bot-As-Is“ would just ignore

the problem entirely, essentially eliminating any goals for realistic scenarios and
emulating of vehicles. Because of these considerations, these strategies were
eliminated and are not considered further.

16

The
”
Width-Speed-Scaling Strategy“ proved to be the most promising, since

it would result in two factors only and its consequences seemed manageable. Its
disadvantages are discussed further in the Subsection 4.2.2.

Calculating the Factors of Width-Speed-Scaling The first factor is based
on the ratio of the width of a Golf VII to that of a TB. The width of a Golf
VII, which is approximately 2.073 m, is set in relation to the width of the TB,
which is 0.178 m (see Section 4.1). This results in a ratio that is used as the
scaling factor from road model to environment when displayed as a floating
point number. This factor is used to scale the x-axis of the environment, as
seen in Table 4.6.

Table 4.6: X-axis scale factor

Parameter Value Unit

Width TB 0.178 m
Width Golf VII (incl. Mirror) 2.073 m
Width Scale Factor (X-Axis) 0.086

The second factor is based on the ratio of the Golf’s maximum speed and
the TB’s maximum speed. For this, it’s pretended that the real car can drive
with a maximum speed of 100 km/h. Using the real maximum speed of the
Golf VII model would result in an impractical environment y-axis scaling. For
example, the scaling would be so small, that every millimeter traveled in the
environment would equal 0.333 m traveled in the real environment, making the
driving functions hard to comprehend. Therefore, a custom maximum speed
was established as the factor used to scale the y-axis of the environment as seen
in Table 4.7.

Table 4.7: Y-axis scale factor

Parameter Value Unit

Pretend Speed 100.000 km/h
Pretend Speed 27.778 m/s
Real TB Speed 0.200 m/s
Speed Scale Factor (Y-Axis) 0.007

In order to use the same factor on Speed and Length, the regular TB length
is scaled down as seen in Table 4.8.

Table 4.8: Scaling the TB length

Parameter Value Unit

Actual Length TB 0.138 m
Length Golf 4.284 m
Length Scale Factor (same as Speed) 0.007
Presumed Length TB (ScaleFactor · LengthGolf) 0.031 m

17

The factors of the other strategies were also calculated for research purposes,
but are not shown here for reasons of simplicity, since they were not settled upon
as the used strategy.

4.2.2 Disadvantages of the Chosen Strategy

Five other scaling strategies were contemplated, see Section 4.2, but ultimately it
has been settled to use the described

”
Width-Length-Scaling“ approach, because

the disadvantages of it seemed manageable - more so than those of the other
strategies. However, there are disadvantages to the chosen

”
Width-Length-

Scaling Strategy“.

The selected
”
Width-Length-Scaling Strategy“ has its limitations and re-

sults in inconsistencies when applied to vehicle models that deviate from the
dimensions of the Golf VII, such as the Jaguar. Comparing such different sized
vehicles to the TB’s dimensions leads to discrepancies in the resulting scaling
ratios. However, the Golf VII is a good reference point for modeling the envi-
ronment, since it is one of the most popular cars in Germany [42]. The error
resulting from using other vehicle models in an environment that is scaled to
the dimensions of the TB is expected to be neglectable. This is supported by
the fact that only the y-axis scaling factor is derived from the ratio of the TB to
a standard car model. That means, swapping in another vehicle configuration
would only affect the scaled y-axis parameters. However, it’s worth noting that,
in the real world, vehicles of various sizes are commonly used, even though the
typical German highway may be designed with a standard vehicle size in mind.
Therefore, this issue is not addressed further in the ongoing work of this project
group.

The
”
Width-Length-Scaling Strategy“ additionally results in a very short

TB (3 cm), which is shorter than it is in reality (13.8 cm). However, this allows
the usage of only two scaling factors for the three dimensions x-axis, y-axis, and
speed, making further calculations easier. Using only two scaling factors is the
main benefit of the Width-Speed-Scaling approach.

Since it is not possible to shorten the TB’s dimensions to the resulting 3 cm
in reality, this limitation is addressed by using the TB’s actual length in critical
components such as the ACC. Furthermore, e. g. , the MVM currently uses the
scaled length of 3 cm, to make various calculations, such as the air resistance.

In summary, each analyzed scaling strategy presented its own set of disad-
vantages. The

”
Width-Length-Scaling Strategy“ was chosen because its disad-

vantages were deemed to be the most manageable.

If the described disadvantages prove to be very impacting on further ad-
vancements, there is another strategy which might be considered. One could
use the

”
Three Factor Scaling Strategy“, but lengthen the TB to 0.37 m/with

a cardboard box wrapper. This way, only two scaling factors would be used,
since the length scale factor would be the same value as the width scale factor,
but the TB would resemble its emulated size also in the physical world. The
cardboard boxes should be designed to remain stable during maneuvers, and
should resemble the TB’s design.

18

Table 4.9: Scaled environment parameters

Actual Axis Scale Factor Scaled

Lane Width 3.750 X-Axis 0.086 0.322 m
Car Width 2.073 X-Axis 0.086 0.178 m
Roadway Width 11.250 X-Axis 0.086 0.966 m
Dashes Width 0.300 X-Axis 0.086 0.026 m

Speed 27.778 Y-Axis 0.007 0.200 m/s
Roadway Length 694.000 Y-Axis 0.007 4.997 m
Dashes Length 6.000 Y-Axis 0.007 0.043 m
Dashes Gap 12.000 Y-Axis 0.007 0.086 m
Car Length 4.284 Y-Axis 0.007 0.031 m

4.3 Scaling Reality

After defining the scaling strategy, and calculating the scaling factors in Sec-
tion 4.2.1, in this section, the actual environment parameter values are calcu-
lated.

The table Table 4.9 shows the specifications of both the scaled and the orig-
inal environment, with the respective scale factors from the

”
Width-Length-

Scaling Strategy“ used. The lane width of a German highway is 3.750 m in
reality, whereas it is 0.32 m in the scaled down environment, making the envi-
ronment constructible.

4.3.1 Resulting Environment

In order to represent a real car in a smaller environment, the real models and
Gazebo models of a three-lane highway use the dimensions depicted in fig-
ures Figure 4.1, which are based on the scaled environment parameters from
table Table 4.9.

The resulting width of the scaled environment also fits a TB 3 Waffle model,
since that model has a width of 30.6 cm. That means, the project group is not
limited to using TB 3 Burger models only. E. g. , Waffles could be used as trucks
in the environment.

Figure Figure 4.1 displays a graphical representation of the scaled environ-
ment using the calculated values from table Table 4.9

The environments are depicted as in Figure 4.2 and Figure 4.3.

19

Figure 4.1: Specifications of the straight highway environment

Figure 4.2: Road in reality

Figure 4.3: Road in the simulated
environment (Gazebo)

20

4.3.2 Using the Scaling in the TurtleCar-Software

In opposition to Section 4.3, where only the scaling down of the road model using
the Width-Speed-Scaling strategy is described, this section goes into detail on
how the scaling strategy is implemented in TurtleCar.

To apply the scaling discussed in Section 4.2, the x and y values of all points
must be multiplied by the scale factors. Since different factors scale the axes,
it’s necessary to adjust all angles as well.

A single scaling factor solution has been established quite early in the project
group, as early as the preliminary project. However, research and experiments
into the consequences on what happens, if two different factors for X and Y are
actually used, have been made quite late in the project. Changing the scaling
factors at such a late stage could have caused many unpredictable issues. As a
result, the approach which uses a single scaling factor used for both axes has
been kept. Specifically, the speed scale mentioned in Table 4.7 has been used
as a single scaling factor.

This is a shortcoming of the project group. The mistake has been made to
not include the researched scaling strategy earlier, as early as the research of
the

”
Width-Speed-Scaling Strategy“. The problem was ignored, which resulted

in many driving functions being developed on the state of a single scaling factor,
such as the Model Predictive Control (MPC). This results in undefined problems
which would occur when changing the single factor to two factors different for
each axis.

This situation results in an environment, which is scaled using the Width-
Speed-Scaling strategy, and the TurtleCar software, which uses the speed scaling
factor only. No problems occur, since the environments scaling is not directly
coupled to any specific technicality. The TurtleCar software just uses the envi-
ronment as-is, without any specific reasoning. However, further efforts should
aim at using the same scaling strategy for both creating the environment and
scaling the coordinates in the TurtleCar software, since the current state is not
consistent and origin of poor methods.

4.4 Differences between Gazebo and Reality

Various aspects of the Gazebo simulation lead to inevitable differences between
it and the actual real-world setup. The following differences between the two
have been identified:

• Gazebo has a continuous guardrail. In the real environment, this is ap-
proximated with smaller straight segments, which can lead to inaccuracies
especially in curves. If the segments are placed too far apart, it can happen
that a hole in the wall is detected, resulting in calculating wrong lanes.

• The small stands for the guardrail segments in the real environment cur-
rently reach into the lanes. This provides a potential hazard to the TB at
the moment.

• The obstacle in Gazebo is 33 cm x 100 cm while in the real environment it
is 32 cm x 44 cm. This means that the real environment obstacle doesn’t
completely fill a lane.

21

• The positions of lanes and lane markings in Gazebo are according to the
measurements in Figure 4.1. In the real environment, they might be dif-
ferent depending on how precisely they are set up. The ground segments
in real life are not perfectly flat, resulting in small inaccuracies in the lane
widths.

4.5 Terms of Safety

The terms of safety for the vehicle follow those of the StVO [14].

4.5.1 Front Back Clearance

The distance to the vehicle in front or behind is not precisely defined by law.
According to §4 Abs. 1 StVO,

”
The distance to a vehicle driving in front must

generally be so large that it can be maintained behind it even if it suddenly
brakes.“

However, there are some general rules of thumb for orientation: One rule sug-
gests that the distance should be at least half the value shown on the speedome-
ter, which is based on §2 Abs. 3a StVO. The second rule suggests that within
urban areas, the distance should be 1 s, which at a speed of 50 km/h is approxi-
mately 15 m. Outside urban areas, the distance should be 2 s, which at a speed
of 100 km/h is approximately 50 m.

4.5.2 Lateral Clearance

Regarding the lateral distance during overtaking, the legal guidelines are vague.
According to §5 Abs. 4 StVO,

”
When overtaking, a sufficient lateral distance

to other road users must be maintained.“ For overtaking
”
pedestrians, cyclists,

and operators of small electric vehicles“ with motor vehicles, the guidelines are
more specific: As per §5 Abs. 4 StVO, the sufficient lateral distance within
urban areas must be at least 1.5 m, and outside urban areas, it must be at least
2 m.

4.5.3 Guidelines for the vehicle

In Table 4.10 are the clearance guidelines for the vehicle defined, which con-
sider the regulations of the StVO. These are not complete (yet) and only are
considering the scenarios which will be implemented.

22

Table 4.10: Clearances

Direction Clearance Notes

Longitudinal <speed [km/h]>
2 [m] Rule of thumb:

”
half

speedometer“ (§2 Abs. 3a
StVO)

Lateral (overtaking car) 1 m No concrete source could be
found. There is a consensus
among the internet on the
value of 1 m.

Lateral (overtaking bicycle,
in town)

1.5 m §5 Abs. 4 StVO

Lateral (overtaking bicycle,
out of town)

2 m §5 Abs. 4 StVO

23

24

Chapter 5

Vehicle Emulation

In order to be able to develop controllers for real cars and test them on the
TB, the behavior of a real vehicle needs to be emulated on the bot. This
section describes the MVM used for emulation, its dynamics and its control
inputs. First, an idealized MVM is defined, which is an abstraction of the actual
emulation that is used for controller development. Afterward, the differences
between the idealized model and the actual implementation are discussed.

5.1 Idealized Mathematical Vehicle Model

The vehicle emulation is based on the Kinematic Bicycle Model (KBM). The
bicycle model is a simplified representation of a car’s dynamics that is used in
the field of vehicle dynamics and autonomous driving for motion planning and is
also often used for model-predictive control [66]. It is called the

”
bicycle model“

as it consolidates the dynamics of a car into a two-wheeled model, where the
two front wheels and the two rear wheels are each represented as a single wheel.
The model can be defined from different points of view along the vehicle. For
this project group, a model with a viewpoint from the center of the rear axle
was chosen for reasons of simplicity. For controlling the lateral movement, the
bicycle model uses steering angle as input. The model used here is based on the
bicycle model definition given by Polack et al. [66]. It contains the following
variables:

• X and Y : The longitudinal and lateral positions of the vehicle, respectively

• θ: The heading angle of the vehicle

• v: The speed of the vehicle

• a: The acceleration of the vehicle

• α: The steering angle

• l: The wheelbase length, which is the distance between the front and rear
axles

• r1: Tire friction value

25

• r2: Air resistance value

• d1: Linear approximation of the disturbance on the acceleration due to
motor friction and transmission

The variables l, α, r1 and r2 are all parts of the vehicle configuration. For
model simplicity, the acceleration in this model is only affected by friction forces.
Motor resistance is only considered as a linear disturbance parameter d1 acting
on the acceleration input in this idealized model. These errors were chosen to
only affect acceleration, not steering.

The control inputs to the model are defined as follows:

u1 = a

u2 = α

The dynamics are defined as follows:

ẋ1 = Ẋ = x3 · cos(x4)

ẋ2 = Ẏ = x3 · sin(x4)

ẋ3 = v̇ = r1 · x3 + r2 · x23 + d1 · u1

ẋ4 = θ̇ =
v

l
· tan(u2)

In the beginning of the project group, a simplified model with three instead
of four states had been used. The velocity had been modeled as a control input
and the implementation was based on using always the maximum acceleration
and deceleration to achieve that velocity as quickly as possible. Because this
only allowed for very sharp and inconvenient driving maneuvers, the model was
reworked to use the acceleration as an input, as it gives the controllers more
freedom and represents the input of a real car more closely.

5.2 Emulated Mathematical Vehicle Model

The emulation extends the idealized model described in Section 5.1 in order to
make it more realistic. In addition to friction and wind resistance, it contains
an approximation of a car’s transmission and gear shift, which affects the actual
acceleration of the car. These disturbances are not part of the idealized model.
Therefore, controllers need to be designed in a way to be robust against these
errors and model discrepancies.

In order to provide these realistic disturbances, a motor and friction model is
used to calculate the highest acceleration of the vehicle possible given the current
gear, vehicle weight, velocity and other relevant variables. If the acceleration
given by the controller is higher, the maximum possible acceleration of the
vehicle is used instead. Conversely, if the vehicle is braking (the controller is
giving a negative acceleration), the highest possible deceleration is calculated
and the minimum acceleration is used.

The model and its implementation are described in the following.

26

5.2.1 Motor Model

The motor model is implemented through a series of calculations and functions
which account for various factors including the engine’s revolutions per minute
(RPM), torque and gear ratios. The motor model takes into account car-specific
factors which can be configured to emulate different types of cars.

The following calculations are based on the formulas given by Stark [84].

Engine RPM The engine’s RPM is computed based on the vehicle’s current
speed, the wheel circumference, and the current gear and final drive ratios.

1. Convert the speed from meters per second to meters per minute by mul-
tiplying with 60:

v[m/min] = v[m/s] · 60

2. Calculate the wheel’s revolutions per minute (RPM) Pwheel by dividing
the speed by the wheel circumference C:

Pwheel[rpm] =
v[m/min]

C[m]

3. Finally, calculate the engine’s RPM Pengine by multiplying the wheel’s
RPM with the current gear ratio G and the final drive ratio D:

Pengine[rpm] = Pwheel[rpm] ·G[rpm] ·D[rpm]

Torque The current torque is calculated based on the engine’s RPM. A lin-
ear interpolation function is employed to interpolate the torque values from a
predefined set of engine speed and torque points.

Gear Shift Handling The motor model checks whether a gear shift is avail-
able or necessary based on the current RPM and the specified RPM ranges for
each gear. If a gear shift is required, the current gear is updated, and the time
of the last gear switch is recorded.

Engine Acceleration Force The engine acceleration force is the total force
provided by the engine and is calculated using the current torque, gear ratio, fi-
nal drive ratio, and the wheel radius. This calculation accounts for transmission
losses.

1. Compute the engine torque after transmission Tengine,t by multiplying the
average engine torque Tengine,avg with the gear ratio G and the final drive
ratio D:

Tengine,t[Nm] = Tengine,avg[Nm]

·G[rpm] ·D[rpm]

2. Compute the engine torque after accounting for engine losses Tengine,l
by multiplying the engine torque after transmission with the engine loss
factor LFengine:

Tengine,l[Nm] = Tengine,t[Nm] · LFengine

27

3. Finally, calculate the engine acceleration force Fa,engine by dividing the
engine torque after losses by the wheel R Rwheel:

Fa,engine =
Tengine,l[Nm]

Rwheel[m]

The TB’s linear and angular velocities can be controlled to emulate the
motion of a vehicle as described by the Bicycle Model. The Bicycle Model is
used since the TurleBot only has two wheels. The model’s state variables are
mapped to TB controls as follows:

• The longitudinal velocity v of the model corresponds to the linear velocity
of the TB.

• The heading θ of the model is used to control the angular velocity of the
TB

5.2.2 Steering Angle Limiting

To ensure that the simulated vehicle behaves realistically at high speeds, its
steering angle needs to be constrained depending on its driven speed. The
steering angle directly affects the turn rate of the vehicle; a high steering angle
combined with high speed results in high lateral acceleration and consequently
could lead to a loss of control over the vehicle. To avoid this and ensure that the
vehicle’s behavior is predictable, the allowed lateral acceleration of the vehicle
needs to be restricted in the emulation model.

bosetti et al. present a formula for the accepted lateral acceleration as
a function of vehicle speed [10]. The formula uses a criterion taken from Levi-
son et al. using data from a driving behavior study to model the acceptable
lateral acceleration for an average and a 85th percentile driver (K = 42.0) [48].
The lateral acceleration limit imposed by the criterion can be seen in Figure 5.1.
The term

”
85th percentile driver“ here refers to someone driving more dynami-

cally than 85% of the population. This solution is suitable for setting a velocity-
based limit on the steering angle in the used MVM, as it is slip free and relatively
simple. For more complex vehicle models, additional factors such as tire dynam-
ics and road conditions could be considered in order to limit the steering angle
in a way that ensures safety. This alternative approach would be independent
of the drivers comfort and instead based on vehicle configuration and road con-
ditions.

The calculation of the maximum acceptable steering angle in the model is as
follows:

1. Radius: The turning radius R of the vehicle given a steering angle α and
the vehicle’s wheelbase l is calculated as

R =
l

tan(α)

The turning radius is inversely proportional to the tangent of the steering
angle, which follows from the Bicycle Model.

28

2. Current Lateral Acceleration: Given the vehicle’s velocity v and turn-
ing radius R, the lateral acceleration alat experienced by the vehicle can
be calculated using the centripetal acceleration formula:

alat =
v2

R

3. Accepted Lateral Acceleration: The accepted lateral acceleration for
a given velocity is calculated using the criterion K from Levison et al..
For an average driver, the K criterions has been estimated to be 36.0 and
for the 85th percentile driver 42.0. The formula from Levison et al. is
as follows:

alat accepted =

(
K

v

)2

If the lateral acceleration for a given speed remains below this value, that
means the vehicle’s behavior is within safe limits [48].

4. Steering Angle: If the current lateral acceleration exceeds the accepted
value, the steering angle α must be reduced. This is done by first calculat-
ing the maximum allowed turning radius Rmax using the accepted lateral
acceleration (formula derived from step 2):

Rmax =
v2

alat accepted

Subsequently, the required steering angle to achieve this turning radius is
found using:

αmax = arctan

(
l

Rmax

)
which gives the maximum permissible steering angle.

Additionally, the model incorporates a static maximum lateral acceleration value
of 5 m/s2. This limit was derived based on the Modified Levinson’s criterion
visualized by the orange line in the graph in Figure 5.1 and was imposed to
improve the low speed behavior of the simulated vehicle.

5.3 Vehicle Configuration

Vehicle configurations, which contain all parameters necessary to simulate a re-
alistic vehicle, are used. These can be switched out depending on the simulated
scenario. Each configuration file is written in the YAML language and contains
the parameters for a specific vehicle model. Furthermore, the configuration of
each vehicle includes details regarding individual components, such as the spe-
cific engine model. This modularity enables constructing configurations using
various types of vehicle parts that have already been defined. Currently, two dif-
ferent configurations are used, one for simulating a sports car (Jaguar F-Type)
and one for a more casual car (VW Golf VII). This way, the implemented driv-
ing functions can be tested on a range of car types: fast and slow ones. In this
chapter, the structure of a vehicle configuration is described and the two used
configurations presented.

29

Figure 5.1: Lateral acceleration in relation to speed based on study data [10].
The green curve is the limit calculated using Levinson’s criterion for an average
driver. The orange curve shows the Modified Levinson’s criterion [48].

5.4 Structure

The modules describing vehicle parameters are divided into five categories: en-
gine, transmission, wheels and vehicle dynamics. These are described in the
following.

Engine The engine is a component that is used by all vehicles and usually
varies from vehicle to vehicle, therefore, its parameters need to be specifiably
independently. The engine specification can be found in Table 5.1.

Table 5.1: Engine Specifications

Parameter Unit

Max torque Nm
Speed at maximum torque rpm
Maximum power hp
Speed at maximum power rpm
Average torque Nm
Average loss %
Speed points full load rpm
Static torque points full load Nm

Transmission Similar to the engine, transmissions are usually unique across
different vehicle models. The transmission specification can be found in Ta-

30

ble 5.2.

Table 5.2: Transmission Specifications

Parameter Unit

Gear switch time s
Start speed rpm
End speed rpm
Gear Ratio Multiplier value
Final drive ratio Multiplier value

Wheels The wheels are a highly variable component when comparing different
vehicles. The wheel characteristics can be found in Table 5.3.

Table 5.3: Wheel Characteristics

Parameter Unit

Wheel radius m
Wheel circumference m
Friction N

Vehicle Dynamics The remaining parameters are dependent on the whole
car. They can be found in Table 5.4.

Table 5.4: Vehicle Dynamics and Performance

Parameter Unit

Maximum steering angle rad
Wheelbase m
Width with mirrors m
Braking force N
Mass kg
Air resistance N
Aerodynamic drag N
Frontal area m2

Maximum speed km/h
Acceleration time 0 to 100 km/h s

5.5 Examples

The two configurations already implemented and used in this project are de-
scribed in the following.

31

VW Golf VII The Volkswagen Golf MK7 with a 2.0 litre diesel engine was
selected to represent a casual everyday car compared to the rather sporty Jaguar
F-Type. Some specifications are depicted in Table 5.5. They correspond to
models built from 12/2016 to 05/2020, and mainly influence the motor and
transmission type. There has been a facelift in 2017, which slightly changed the
exterior und integer design, but has no impact on technical parameters. Some
of those specifications are not strictly bound to the car model itself, i. e. the
transmission

”
DQ381“ is used in many other vehicles.

Table 5.5: VW Golf VII Model Details

Parameter Details

Model VW Golf VII 2.0 TDI with DSG
Build Duration 12/2016 - 05/2020
Engine Type Diesel
Engine Series VW EA288
Engine Code Letters CRMB, DCYA, DEJA, CRLB
Displacement 1968 cm3

Max. HP @ RPM 150 @ 3500 − 4000
Max. Torque @ RPM 340 @ 1750 − 3000
Used Wheel Size 205/55 R16
Transmission Type DQ381
Remarks on Transmission DSG with 7 gears (From 12/2026, 6

gears previously)
Drive Type Front wheel drive

Jaguar F-Type The configuration of this vehicle model originates from the
pre-project and contains the specifications of a Jaguar F-Type. These specifi-
cation are depicted in Table 5.6. The Jaguar F-Type was selected to represent
a sports car.

Table 5.6: Jaguar F-Type Specifications

Parameter Specification

Model Jaguar F-Type
Engine type 3-litre V6 DOHC V6
Max. HP @ RPM 340 @ 6500
Max. torque @ RPM 450 @ 3500
Used wheel size 295/30 R20
Transmission type Automatic, ZF8HP, RWD
Drive type Rear-wheel drive

The information for the Jaguar F-Type is taken from X-engineer [94].
However, the final drive ratio parameter provided by this source is not used. It
specifies a single value for all gears. The VW Golf, on the other hand, has two
different values for that parameter instead of a single global one for each gear.
Due to this fact, the Jaguar F-Type configuration was adapted to represent this
structure by copying its own value.

32

Clear information on some parameters for the VW Golf could not be found.
These were taken from general knowledge or approximated as described in the
following. The steering angle is defined by a statement in Auto Motor und
Sport:

”
40 degree steering angle for conventional vehicles“ [6]. The braking

force is calculated by taking an intermediate value for the deceleration between
the emergency braking value for the Golf, which is about 10.6 m/s2 [13], and the
minimum required value by law: 2.5 m/s2 [12].

Also, the values for the VW Golf’s parameters had to be gathered by different
sources. These will be mentioned here. The aerodynamic drag, frontal area
and air resistance values are taken from the collection of Cordes [17]. The
gear switch time values are taken from VWVortex [22]. Additional sources
were used for information about the gear ratios [21], [79]. The dyno chart was
taken from More BHP. It shows two graphs, the important one is the thick
line representing the stock engine [7]. The chart was manually evaluated using
Engauge Digitizer [53]. Information on wheels and further details were also
collected [92], [87].

5.6 Considered Mathematical Vehicle Models

In this section, other applicable mathematical vehicle models MVM are dis-
cussed and compared to the used KBM KBM based on extensive research in
the field of vehicle dynamics. At the end of this section, one should have an
overview of different vehicle models, their advantages and disadvantages, and
how applicable they are to this project. Also, ideas for further evaluations
and experiments are given, which could lead to improvements of the TurtleCar
platform.

The research on this topic has been extensively guided by the following main
questions.

1. Are other MVM more fitting to the task at hand?

2. Should the Differential Drive Model (DDM) be used instead?

3. What are the consequences of using a simple KBM, and not, e. g. , a com-
plex four-wheel dynamic model, and, are these consequences acceptable?

4. Which replacements can be made to address certain inaccuracies, like
missing tire slip and mechanic forces?

5. Which further evaluations and experiments could be made to test the
effectiveness of the used model?

5.6.1 Kinematic Bicycle Model in the Field of Mathemat-
ical Vehicle Models

The KBM is a kinematic MVM, in opposition to dynamic MVM. Kinematic
models describe the geometrical change over time in a planar system like an
inertial coordinate system. Dynamic models on the other hand describe the
interaction of forces and mass distributions which result in velocity and acceler-
ation. The KBM is commonly used for creating controllers for model-predictive
control [66].

33

The KBM is a MVM with low complexity. It has few Degrees of Freedom
(DOF), in general two to six. Some MVM exist with up to 19 DOF [76, p. 313],
so in comparison, the KBM is a simple model. It does not incorporate roll or
pitch angles, and only considers the frontal wheel as a steering wheel.

Literature suggests, that for low complexity driving functions, the KBM
should be sufficient: It can be used to represent four-wheeled cars as well as
two wheeled cars with almost equal accuracy. The number of DOF for the
KBM does not seem to play a big role in regular applications. A complex six
DOF Bicycle Model is very close in results to a simple two DOF model. The
KBM is also flexible. It can be used to model longer wheelbase vehicles such
as buses. Other papers have shown that a four-wheel steering double track
model, as an extension of the Bicycle Model, does result in higher accuracy in
some situations. However, these advantages are only relevant for inexperienced
drivers. Furthermore, front wheel steering provides most of the benefits of four-
wheel steering [24, p.215].

However, having stated benefits of the KBM, more complex models are able
to represent reality more closely, which might lead to higher accuracy and more
capabilities. Siwek et al. support this argument, proposing that dynamic
models are much better solutions than kinematic models [80].

5.6.2 Reasons for Choosing the Kinematic Bicycle Model

First of all, it should be noted that the KBM has been chosen for simplification
reasons. The assumption has been made that it is a model which should suffice
for all kinematic descriptions of motion in the context of this project group.
However, critical reflection is required because the chosen MVM has a big impact
on the TurtleCar software and its set of all implementable driving functions.

Even though the goal of this project group is to simulate real world cars
using the inexpensive hardware of the TB, deviations will naturally occur, since
the TB only has one wheel axis and does not conform to the regular geometry
of a car. This means, simulation of driving functions using TurtleCar inherently
does not adhere to higher goals of perfect simulation, but rather to practical
and economic reasons.

Therefore, whether a very complex or highly simple MVM is chosen does not
really matter for the goals of TurtleCar. However, a simple MVM most likely
results in simpler implementations of driving functions and reduces complexity,
the presence of which could rise the entry hurdle of future developers and stu-
dents. This advantage of lower complexity is the main reason why the KBM
has been chosen.

Moreover, the KBM presents itself as a natural choice, because most robots
have low level controllers built into them, which hold a steady velocity once
given [20] - just like the TB does. Since the KBM proposes differential equations
for the inputs of speed and acceleration, but most dynamic models define the
inputs to be torques and voltages [54], choosing a dynamic model imposes even
more difficulties.

On the other hand, an insufficiently complex MVM could be the cause of
driving functions not working as intended or not being able to implement future
features. Stating common replacements for the KBM and their possible use in
TurtleCar could support further work on the TurtleCar platform and give an
idea for its possible improvements. If one chooses to include a dynamic model,

34

there appears to be research on providing speed and acceleration input based
dynamic models [60].

5.6.3 Discussion of other Vehicle Models

In this subsection, other MVM are discussed as alternatives to the KBM. First,
other possible options are introduced. Second, arising questions are discussed.

Differential Drive Model This is a model which aims to predict the be-
haviour of vehicles with a differential drive. A differential drive is one where the
vehicle has only one axle and optionally a ball caster wheel for stabilization [54].
This is the case for the TB as well. This model would be a good fit for steering
a differential drive robot. However, the focus of the project group are four-
wheeled cars without a differential drive. Using a DDM would therefore not be
a suitable basis, since it would require a translation layer to a non-differential
car model.

Dynamic Bicycle Model This model is the dynamic version of the KBM,
considering not only geometric change, but also torques and forces. Kang et al.
provide an in depth comparison of the properties of both and their results.
They state that for autonomous driving in highway conditions,

”
unless there is

considerable variation in tire-road friction, the kinematic model is enough to
understand and analysis of vehicle motion“ [38].

Four-Wheel Kinematic Model This model is an extension of the KBM, in
considering not only two wheels, but four. This might result in better represen-
tation of real cars. However, the achieved benefit of four-wheel steering is only
relevant in certain conditions [46]. Also, four-wheel steering benefits originate
for the greatest part from the front wheels [1].

Four-Wheel Dynamic Model This model is the dynamic version of the
Four-Wheel Kinematic Model and thus provides the same benefits over the
kinematic model as the Dynamic Bicycle Model would on the KBM. If a dynamic
model should be chosen, and a four-wheel model is required, this would be a
good choice. As stated above, using a dynamic model is not important to
TurtleCar, since the application does not incorporate heavy and fast vehicles.
The TB weighs 1 kg and its maximum translational velocity is 0.22 m/s, which
cannot be compared to real cars for which Kong et al. [41] make their arguments.
Additionally, TB has almost no side-slip angle due to its physical proportions,
so a dynamic model would not yield extra accuracy.

5.6.4 Possible Reasons for Choosing other Models than
the Kinematic Bicycle Model

Martins and Brandão [60] suggest, that high velocity or heavy load transporta-
tion applications should use dynamic models. Applications that contain inex-
perienced drivers should consider four-wheel models, as suggested by Eskandar-
ian [24, p.215]. Siwek et al. [80] advocate dynamic robot models for high velocity
and high positional accuracy applications. Kong et al. [41] on the other hand

35

recommend the Dynamic Bicycle Model for controllers that produce insufficient
results or are confronted with higher speed sinusoidal tracks. When faced with
high lateral acceleration scenarios, Polack et al. [67] propose to use higher ac-
curacy models. Dynamic models should also be chosen when forces like torque
and tire side-slip angles need to be considered, as these are regarded in the dy-
namic counterparts of the KBM. On a different note, Martins et al. [54] state
that choosing a dynamic vehicle model results in the ability to perform stability
analysis on the vehicle, which might result in high-end, i. e. , very accurate,
controllers.

As stated, the
”
Dynamic Bicycle Model“,

”
Four-Wheel Kinematic Model“,

and
”
Four-Wheel Dynamic Model“ would not yield significatn benefits for the

scope of this project. However, whether using the DDM or the KBM is more
complex. First, it is a good thing that the TB is using a differential drive, as
they can perform more maneuvers and are more flexible in tight spaces [59].
One could then ask why a DDM should not be used as well. An argument
against that would be that the project group aims to provide a platform for
experiencing the development of real-car controllers, which are used in four-
wheel vehicles. So, the MVM that is used as a basis should also be close to
those vehicles, for which, as stated in Subsection 5.6.1, the KBM is sufficient.
However, this argument requires more evaluation and experiments, since it has
not been tested experimentally.

In conclusion, future developments and works on TurtleCar should consider
the given suggestions when they are challenged with one of these problems.

5.6.5 Answering the Research Questions

In this section, the main research questions asked in the beginning of this chapter
are answered based on the research in the sections above. For answering those,
the context of the questions should be stated again. This project group is aiming
to provide a platform for getting hands-on experience in the development of
controllers for real cars. It is not aiming to develop optimal controllers and
driving functions, but to provide a framework for developing interesting driving
functions on inexpensive hardware and simulating real life driving scenarios in
a controlled environment. Therefore, the achievable learning effect is valued
higher.

Are other MVM more fitting to the task at hand? This depends
on the emulated scenarios and driving functions to develop. For the current
scenarios and driving functions, the KBM is sufficient. The implemented driving
functions and controllers in this project group work well and there were no
hints that the KBM imposes a problem. This is also backed by research [41].
However, there are scenarios where the used model should be replaced, as stated
in Subsection 5.6.4.

Should the DDM be used instead? For this, more extensive experiments
and research should be conducted in the future. For now, the KBM seems
to model the TB sufficiently, since no problems were encountered. Also, the
KBM is more close to the vehicles that are the aim of emulation, as described
in Chapter 5, which should result in more transferable learning experiences in
developing controllers for real cars. However, a more accurate way of controlling
the TB itself would probably be using the DDM. It could be, that those benefits
would only present themselves with bigger robots and higher speeds.

36

What are the consequences of using a simple KBM, and not, e. g. ,
a complex four-wheel dynamic model, and, are these consequences
acceptable? The consequences have been described extensively in the sections
above. They are acceptable, since the KBM seems to be sufficient for the de-
veloped driving functions in this project group. When issues occur, one could
improve the model by following Subsection 5.6.4.

Which further evaluations and experiments could be made to test
the effectiveness of the used model? A summary is given in Chapter 20.

Which replacements can be made to address certain inaccuracies,
like missing tire slip and mechanic forces? This is answered extensively
in Subsection 5.6.4. However, it should be mentioned that most improvements of
driving functions would be made in tuning of the parameters and the controllers
itself [78].

37

38

Chapter 6

Sensor Augmentations

This section describes various sensor augmentations made during the project
group. The augmentations are ranging from hardware modifications to addi-
tional ROS topics.

6.1 Camera

The camera of the vehicle streams the image data in front of it into the ROS
network. The camera data can then be used to perform lane and object detection
in the frames sent by the camera. Lane boundaries and road participants are
examples of objects to be detected.

6.1.1 Camera Service

The camera service is used to stream image data into the ROS network. It can
be used in two ways:

• With a web server

• Headless

With a web server This variant uses a web server to show the image stream
sent by the vehicle’s camera on a webpage. The server is hosted on the TB’s
network address and is running on port 5000. To see the images, the webpage
has to be refreshed once after starting the camera service. This variant is more
suitable for troubleshooting.

Headless The second variant needs no user interaction for sending messages.
If the ROS service /camera_serice is called it will either start or stop sending
images.

Parameters In the service request, different values are used for parameters
as

”
Opcodes“ to customize how the node should behave. These are listed in Ta-

ble 6.1, Table 6.2, Table 6.3, Table 6.4:

39

Table 6.1: Parameters for the camera service request

Parameter Description Default Value

request The request opcode 0
frame width The requested frame width of images 640
frame height The requested frame height of images 480
frame rate The framerate to capture images with 10

Table 6.2: Table for Opcodes

Opcode Description

0 Toggels camera server

Table 6.3: Parameters for the camera service response

Parameter Description Default value

status The response Code 0
message A message with status information N. A.

Table 6.4: Table for status codes

Opcode Description

0 Success

6.1.2 Camera Mount

The TB already had a static mount for the camera attached. To be able to
dynamically change the viewport of the camera, the simple mount was replaced
by a more advanced mount. This new mount uses a pan-tilt design to make the
camera angle adjustable on two axles. The new mount was designed for and
printed using a 3D-printer. For the assembly, small screws were used and the
servos were put in place. The 3D model can be seen in Figure 6.1. Since this
new mount effectively, slightly reduced the viewport stability of the camera and
the project group has not encountered a situation where an adjustable camera
would be crucial, the basic mount still remained the overall default.

40

Figure 6.1: New camera mount with movable joints to control the camera with
servo motors.

6.2 Kalman Filter

The TB uses the odometry topic /odom to publish information about the ve-
hicle’s position and movement. This data provided is however quite noisy. To
counteract this problem, a state estimator was chosen to filter the noise and
approximate the real state of the vehicle. A common approach for estimating
the state of a moveable vehicle is using a Kalman Filter (KF).

The KF is a recursive algorithm designed for estimating the state of a lin-
ear dynamic system from a series of noisy measurements. At its core, the KF
operates in two fundamental steps: prediction and update. These steps are
mathematically represented by a set of equations that govern the filter’s op-
eration, allowing it to predict the system’s future state and then correct this
prediction based on new measurements [37].

A KF assumes a linear evolution of its state and expects a Gaussian distri-
bution of error. The bicycle model, which is used to describe the movement of
the vehicle, is a non-linear model. This means a KF would not be a viable use
for the estimation of the vehicle’s state.

For non-linear models there are three other options to use: Extended Kalman
Filter (EKF), Unscented Kalman Filter, and Particle Filter. The EKF is chosen
for its lower computational requirements compared to the alternatives.

The implementation of the EKF was based on the project
”
Kalman and

Bayesian Filters in Python“ [45], which provided documentation on the creation
of an EKF for tracking the movement of a robot.

The variables used for the vehicle state are:

• X and Y : Longitudinal and lateral positions of the vehicle, respectively

• θ: Heading angle of the vehicle

41

• v: Speed of the vehicle

• a: Acceleration of the vehicle

• l: Wheelbase length, which is the distance between the front and rear
axles

• θ̇: Turn speed of the vehicle

• au: Acceleration control signal of the vehicle

• αu: Steering angle control signal of the vehicle

• t: Time Step

The state and control matrix for the EKF are defined as followed:

x =
[
X Y v θ a θ̇

]T
u =

[
au αu

]T
The predicted movement of the vehicle is described as followed:

f(x, u) =


cos θ · v · t+ x
sin θ · v · t+ y

a · t+ v

θ̇ · t+ θ
au

v · tanαu/l

 (6.1)

The equations for the predicted movement are based on the bicycle model
described in section 5.1.

In the update phase the EKF gets the velocity and heading of the vehicle
provided by the odometer. The variance of the measured velocity is not constant
and is depended on the actual velocity of the vehicle. Variance values were
determined by measuring 100 data points for each velocity from 0 m/s to 0.2 m/s.

42

Figure 6.2: Variance of Velocity Measurement

Through graphical analysis it was determined that the variance function is
quadratic. A exponential regression was done and resulted in the function:

varv(v) = 3800 · v2 + 23.1 · v + 0.4 (6.2)

It was tried to incorporate the acceleration from the inertial measurement
unit (IMU), but this effort was abandoned in favor of other important tasks.
The IMU signals have strong outliers which occur because of the limited discrete
velocities the TB can reach. The TB can reach speeds from 0 m/s to 0.22 m/s
and can only increase or decrease its velocity in 0.01 m/s steps. This has the
effect that the TB can only achieve 23 discrete velocities.1 An acceleration of
0.01 m/s2 would result in a velocity graph like this:

1The effective velocity the TB reaches is not truly discrete due to environmental influences,
but it can only be targeted as such.

43

Figure 6.3: Velocity of TB

And the corresponding acceleration of the TB would look like this:

Figure 6.4: Measured Acceleration of TB

44

To measure the applied acceleration, the frequency of the peaks needs to be
calculated. This is not an easy task if the measurement has a lot of noise and
the acceleration keeps changing.

In figure 6.5 the resulting EKF in comparison to the measurements is seen.

Figure 6.5: EKF: Vehicle State

The EKF provides a good estimation for the filtered states, especially for
the velocity which has the highest variance in the measurement. The velocity
mentioned inside Figure 6.5 is the velocity signal send to the vehicle by the
transposer.

6.3 Sensor Fusion

Sensor Fusion is the combination of different sensor signals into one signal to
create information which is more reliable than that provided by the sensors
individually. There are several methods that can be categorized into three
groups:

”
Probabilistic methods“,

”
Methods based on least squares techniques“,

and
”
Fuzzy logic and neural networks“. The most common method is Kalman

filtering which is part of the category
”
Methods based on least squares tech-

niques“ [75].
In the following are some approaches described to introduce sensor fusion

into TurtleCar-Core.
The TB uses four kinds of sensors to collect data about its environment and

its own state: an odometer, an IMU, a LIDAR, and a camera.
Odometer and IMU provide data about the state of the vehicle, such as

velocity, acceleration, X Position, and Y Position. This information is already

45

incorporated into an EKF, which is described in 6.2. With a KF, it is easy to
fuse sensor inputs as it just requires multiple updates with the different sensor
data.

The LIDAR and the camera collect information about the environment.
There are two possible fusions for LIDAR and camera data: Fusing the lane
information and fusing the obstacle information.

To fuse the lane information, a simple approach would be to take the mea-
sured lane points from the LIDAR and the camera and interpolate a B-spline
through all points. Another approach would again be to incorporate a KF and
update the filter with both camera and LIDAR data. The usage of a KF for
lane boundaries is described in multiple papers [50] [35].

Obstacle information is already partially fused by combining some informa-
tion from the LIDAR detection with the camera detection into one list of all
detected obstacles. As described at the end of section 10.1, here the usage of a
KF would be a viable approach.

46

Chapter 7

TurtleCar-Core

There are multiple ROS Nodes running on the TB which together form TurtleCar-
Core. The architecture of each node is described here. In order to run these
nodes, a specific setup of the image running on the TB is required, which is
explained here as well.

7.1 TurtleCar Node

In the module called TurtleCar-Core, the main parts of the software controlling
the TB are implemented. Its tasks are to gather sensor data, define a control
action according to its current scenario and goal, and publish that action to the
relevant actuators.

7.1.1 Architecture

The diagram in Figure 7.1 shows the basic building blocks of the code. It is
simplified in the way that the TurtleCarNode class is the root class and consists
of all other classes. In order not to clutter the diagram, these compositions are
not drawn.

Figure 7.1: Static view of the architecture of the TurtleCarNode

The architecture is modular and can be separated into these classes:

47

• TurtleCarNode: The TurtleCarNode class is the root class. It provides
the ROS interface which is used by other parts of the software to subscribe
or publish to ROS topics. It is also the root for the tree of dependent
classes.

• Model: The model represents the observable state of the robot. It con-
tains information on the state of the vehicle as well as the environment
and the control actions taken. It is filled by the SensorEvaluator classes
and read out by the Observer.

• Sensors Evaluators: These classes read out sensor values by subscribing
to their ROS topics and processing the information gathered to create
meaningful information from them, i. e. detecting obstacles or lanes. The
processed information is added to the Model. To gain information from a
sensor and put it into the model, this class needs to be inherited from.

• Observer: This class acts as an Observer in the context of control de-
sign. The data in the model only represents the observable state, which
may not be the complete state information needed to control the system.
The observer estimates the actual state from the observable model. The
Controller and the Visualizer read from this observer instead from the
Model directly. If the model is amended, the observer probably has to be
altered as well.

• Controller: Reads the state information provided by the Observer and
decides on a control action depending on that state. Writes the control
action back into the Model. Adaptation of the robots actions is done here.
Third parties are able to write their own controllers, in order to implement
driving functions.

• Visualizer: Reads the state information provided by the Observer and
visualizes it through a GUI. Additional visualizers may be added.

• Transposer: The goal is to simulate a car which has a different behaviour
than the TB. The Transposer reads the control actions from the Model and
maps them to the behaviour of the car model. It then publishes messages
via the TurtleCarNode to the bot’s actuators so that the robot shows that
behaviour. Since it simulates the car, it also writes the information about
the car’s new state - like the current gear - back into the Model.

7.1.2 TurtleCarNode Core Loop

The core loop of the TurtleCarNode on a high level is shown in Figure 7.2. The
node starts with initializing the model, observer, transposer, sensor evaluators,
controllers and the visualizer. After that, timers are created for the different
tasks TurtleCar-Core fulfils. Timers are used to ensure that different tasks can
be scheduled for different time intervals.

The different tasks TurtleCar-Core fulfils are shown in table 7.1
ROS guarantees that timer callbacks and sensor callbacks don’t execute si-

multaneously. Only one callback is processed per loop, preventing any concur-
rency issues.

48

Create Model

Create Observer

Create Transposer

Create Sensor
Evaluators, Con-

trollers, Visualizers

Create Timers

Process Task Callback

running?

Stop Car

no

yes

Figure 7.2: Start and core loop of TurtleCarNode

Task Interval Description
Plotter 1 s Updates the plotter for the EKF
Main 0.1 s Updates observer, controller and trans-

poser
Prediction 0.01 s Predicts next state
Visualizer 1/30 s Redraws the visualizer and process in-

puts
Model Broadcast 0.1 s Publishes parts of the vehicle state for

external input/output devices
Platoon Broadcast 0.2 s Publishes own position and detected

obstacles to the platoon members (see
Section 16.7)

Table 7.1: Tasks of the TurtleCarNode

49

7.1.3 Filtering Sensor Values

The information gathered from the sensors via the ROS interface may need to
be filtered to be usable by the modules interpreting that sensor data. In the
context of the project group, two variants of filtering are defined, which are
reflected in different aspects of the architecture:

Technically Necessary Filtering There exist technical reasons for filtering
values directly when they are retrieved from a ROS message. One example
is the LIDAR: It has a varying resolution which must be upscaled to a fixed
resolution by interpolating missing values. This is done directly when retrieving
the values. Sensor Evaluators using the standard lidar.subscribe_lidar()

function implicitly receive the fixed-resolution values. When necessary, a similar
standard filtering behaviour may be implemented for other sensors as well.

Task Specific Filtering Some Sensor Evaluators may have requirements for
filtering the sensor values that are not necessary for processing the values, but
are functional requirements related to their task. These filters are implemented
in the context of the Sensor Evaluator and only used to fulfill its task, but do not
influence the input to other Sensor Evaluators. Each Sensor Evaluator has to
explicitly implement the filters it needs or explicitly use a filter function shared
between evaluators.

7.1.4 Unit Testing

pytest [43] is used to perform unit tests. For mocking, mockito-python [58] is
used. When writing unit tests, the following criteria should be met:

• Test one specific aspect of the code under test

• Mock the complete environment of the function. Everything that is not
part of the code under test should not be executed.

• If the tests or the mocking effort is high, consider refactoring the tested
code to enable smaller tests.

All tests are located in the tests directory.

7.2 TurtleCar-Core Coordinate System

TurtleCar-Core uses two different reference frames to use coordinates: a local
frame and a global frame.

7.2.1 Local Coordinate System

ROS sends its coordinates inside a local frame where the X-axis is aligned with
the vehicle’s heading. To the left of the vehicle is the positive side of the Y-axis
and to the top is the Z-axis. In the following, the Z-axis won’t be mentioned
anymore because the scenarios of this project all assume a flat street without
any elevation.

50

Figure 7.3: Local Coordinate Sys-
tem: Start Point

Figure 7.4: Local Coordinate Sys-
tem: Driving

While driving, the origin of the coordinate system follows the vehicle. This
kind of coordinate system is useful for calculating the relative distances or angles
to other objects.

When the heading of the vehicle changes the coordinate system also rotates.

Figure 7.5: Local Coordinate Sys-
tem: Not Rotated

Figure 7.6: Local Coordinate Sys-
tem: Rotated

With a local coordinate system it is not possible to drive along trajectories
as the origin keeps moving. This is, however, necessary for control strategies
like MPC.

7.2.2 Global Coordinate System

A global coordinate system uses an origin which is fixed in space. TurtleCar-
Core uses the start position of the ego vehicle as its first origin. The key dif-
ference to the local coordinate system is that even when the vehicle moves the
origin stays at its place.

Figure 7.7: Global Coordinate Sys-
tem: Start Point

Figure 7.8: Global Coordinate Sys-
tem: Driving

If the position of the vehicle is rotated at startup, the street does not align
with the X-axis. This does not pose a functional problem, but can be tricky
when trying to debug wrong coordinates.

To ensure the coordinate system is aligned with the lane borders, TurtleCar-
Core moves the origin after the first detection of the lane borders. The origin is

51

Figure 7.9: Global Coordinate Sys-
tem: Rotated Start

Figure 7.10: Global Coordinate Sys-
tem: Rotated Driving

set on the rightmost lane border and the coordinate system is rotated so that
the X-axis is parallel to the street.

Figure 7.11: Global Coordinate Sys-
tem: Alignment Start

Figure 7.12: Global Coordinate Sys-
tem: Rotate Origin

Figure 7.13: Global Coordinate System: Move Origin

The origin of the global coordinate system can also be set from the outside
using a ROS topic to send a coordinate and rotation relative to the vehicle.
This can be used to unify two or more coordinate systems of different vehicles
inside a platoon.

The local lane and obstacle coordinates are globalized every observer update
by using the heading and global position of the vehicle state. First the local
coordinates are rotated by the heading and then they are moved by the position
of the TurtleBot.

7.3 TurtleBot ROS2 Image

It is possible to automatically build a minimal, customized image, which is real-
time capable, for the TB. The repository which can be used for this can be
found in the project groups GitLab [33].

It is important to note that the image cannot be built using the
docker image, due to limitations of systemd-nspawn.

Dependencies are customizable by opening

image_builder/data/jammy-rt-hubmle/scripts/

52

and adapting the file phase1-target. Under the comment
”
user-specific depen-

dencies“ it is possible to add desired dependencies via apt.
To build the image, change to the top folder and run

make jammy-rt-ros2

After that, a fully bundled .img file is generated, which can be burned to an
SD card. Detailed documentation can be found in the repository. Please note
this is an updated version of another public project called Raspberry Pi image
with ROS 2 and the real-time kernel [27].

7.4 TurtleBot ROS2 packages

In the ROS packages provided by the TBs manufacturer, some calculations for
the ROS /odom topic were missing. Incorrect time comparisons were made here,
which led to a falsification of the values of the /odom topic. The bug has been
fixed and builing the ROS packages manually offers more flexibility in the future,
if changes are necessary for the packages.

7.5 TurtleBot Bringup

To simplify starting all services on the TB hardware, a startup script was built
which starts all necessary services of the TB at once. Previously, several con-
nections to the TB had to be established in order to start all services. All logs
are stored in corresponding process IDs (PIDs) paths and thus make it possible
to trace the logged behaviour of the TB. The script also offers the possibility to
shut down all started services completely.

7.6 ROS2 WiFi network with TurtleBots

This section aims to provide a overview of Zenoh and integrating it with the
TBs and client devices.

Zenoh offers significant advantages in terms of network traffic reduction,
particularly in scenarios where network efficiency is paramount. Its ability to
optimize local processing, employ content-based routing, and filter/aggregate
data makes it a valuable tool for minimizing unnecessary network traffic. One
key aspect of Zenoh’s traffic reduction capabilities is its operation, where devices
can process data locally before transmitting it over the network. By intercept-
ing and optimizing local traffic, Zenoh reduces the volume of data transmitted
across the network, thereby alleviating congestion and improving overall net-
work efficiency [5], [18].

One of the primary difficulties for ROS over WiFi networks is the inher-
ent unreliability of wireless communication due to multicasting because of the
shared collision domain [96]. WiFi networks are susceptible to interference,
signal attenuation, and dynamic channel conditions, leading to unpredictable
packet loss and latency variations. In traditional multicast protocols, such as
UDP-based multicast, these issues can result in significant data loss and de-
livery delays, undermining the reliability of communication in ROS systems.

53

Figure 7.14: An abstract representation of the network structure when using
Zenoh.

During the PG, it was repeatedly noted that there was a large dropout of data
via ROS. This became even worse when two TBs were operated simultaneously.
The clients received less and less data until finally almost nothing arrived and
the bots could only be reached via an SSH TCP connection.

ROS multicast utilizes the Publish/Subscribe (Pub/Sub) messaging paradigm,
where nodes publish messages to specific topics, and other nodes subscribe to
receive messages on those topics. Multicasting in ROS involves broadcasting
messages to multiple subscribers interested in particular topics simultaneously.
However, traditional multicast protocols face challenges in WiFi environments
due to packet loss, latency, and network infrastructure limitations.

Zenoh addresses these challenges by introducing a approach to data distri-
bution that is specifically designed to overcome the limitations of traditional
multicast protocols in WiFi environments. By decoupling data producers from
consumers and introducing intelligent routing and caching mechanisms, Zenoh
optimizes the distribution of data across the network, ensuring reliable and ef-
ficient communication in ROS systems over WiFi using TCP for bridging the
connection [4], [3].

The Zenoh integration process is relatively straightforward. Firstly, on the
TBs, the bringup process and all relevant components are initiated. However,
instead of transmitting packets to the network, they are directed to the loopback
device, lo, effectively preventing network transmission. Now, concerning Zenoh,
it is launched on the TB, where it detects ROS traffic on the loopback device,
which is limited to local communication. Zenoh intercepts this local traffic and
makes it available on a TCP port. To receive these packets, Zenoh must also
be installed on the clients, such as laptops, to establish a connection with the
Bot using port specified port. Once Zenoh is connected, the traffic is received
directly on the laptops. An abstract overview of the described behaviour can be
viewed in Figure 7.14. It’s worth noting that a binary must be started within the
Docker development container to interact with the TBs at all. This additional
step is a minor drawback to consider when working with the container.

54

Chapter 8

Code Quality

In this part of the documentation, elaboration on the decisions regarding Cod-
ing Style and Static Code Analysis (SCA) can be found. In the context of the
project group, Coding Style and SCA are differentiated. Coding Style includes
the ruleset and principles which influence what code is produced. SCA consists
of development tools and CI/ CD methods, which allows maintaining parity
to the set Code Quality. CI stands for Continuous Integration, and is a typi-
cally automatically triggered process that performs tasks such as checking the
source code, running tests and ensuring that the source code is compilable [26].
With this process, the goal of having a stable code repository in terms of Code
Quality is supported, since automatic Code Quality checks are possible. This is
explained in more detail in Section 8.3.

8.1 SCA

There are two main parts of SCA used in the project group: formatting and
linting. The coding style is provided by the tools used.

Formatting is the way how the code is formatted: which indentation size
is used, how long lines should be and where newlines are located. Formatting
ensures that each line of code that is written is in a format that is comprehensible
by each member of the project group. The code formats automatically and no
further manual intervention is required.

Linting on the other hand makes sure that the code that is written is error-
free and adheres to a certain code style: Here, checks against unused variables,
long lines and unnecessary complexity are employed. Some linting errors are
also fixed by formatting, i. e. long lines. But because fixing most linting errors
is a non-trivial task, oftentimes manual intervention is required.

8.2 Development Tools

In order to ensure that the code is in the correct format and to reduce its
errors, tools are employed. For formatting, use black [8] is used. For linting,
use ruff [74] is used.

Both tools were chosen for the following reasons:

55

• Opinionated

– Being opinionated allows for adhering to community rules forged by
years of development time.

– At the beginning, there is no desire to employ custom, project group
specific rules. Everything is changing constantly - there is no need
for complex configurations, but for quick usage.

• Modern

– Modern tools allow for staying cutting-edge.

– They improve the readability of the codebase.

• Fast

– Being fast means every machine can run the tools, even if one devel-
oper happens to have a slow machine (by modern standards).

– There is no need to worry about the code base growing so large that
the SCA tools will take an unreasonable amount of time to run.

– Limited numbers of job runners are available in GitLab, as the in-
stance is self-hosted. Therefore, being fast reduces the occupation on
those limited resources.

8.3 Continuous Integration

In this section, the ways CI is used in the project group are described. Also, the
configuration of the employed pipelines is explained. Pipelines are essentially a
set of steps the source code has to pass in order to be valid.

8.3.1 Integration in the workflow with CI

In order to allow constant integration, black and ruff are used not only locally,
but also in the GitLab projects pipelines. This ensures that every commit and
merge request is checked.

If black detects that the format is not correct or ruff finds any linting er-
rors, merging the respecting merge request is disallowed. Also, reviewers will
immediately take notice of this and will ask the developer to fix this.

This ensures that the code in the stable branches of the projects remains
protected and in a valid state. Additionally, this provides fast feedback for
developers whether their code contains errors. This makes locating and fixing
errors faster.

8.3.2 Pipeline

In the pipeline, ruff and black are executed. In the following, the mechanics of
the pipeline are documented. This part explains the following:

• Elaboration on the pipeline concepts, not the details

• Explanation of the most important caveats, like caching and sometimes
allowing pipes to fail

• Starting point for getting to know the pipeline

56

How the pipeline works The following will explain the structure & concepts
of the pipeline in use. In the implementation of the pipeline configuration,
the official Python docker image is used, so that some configurations for the
executing runner are already present.

Pipeline Building Blocks

• before_script Block

– Ensures that a virtualenv is used

– Debugs the Python version

– Executes before each job

• build-job

– Currently only a stub

– Might be used later, when actual building of the ROS packages is
required

• format-test-job

– Runs black and checks for formatting errors

– Prints encountered errors to ‘stdout‘ for debugging purposes

• lint-test-job

– Runs ruff

– Looks at the .pyproject.toml file in order to configure ruff

– Generates a codequality artifact .json, which is used by GitLab to
measure code quality

– Also prints all encountered errors and warnings to stdout

– By using dependencies, this job only runs after format-test-job

Important note: The test in the jobs name refers to the task of testing if the
source code is in a conforming state. This does not mean that the jobs are only
’test’ versions.

Caching the installed pip packages The cache is used in order to let the
runner cache installed packages, so that ruff und black are not reinstalled in
every run of the pipeline.

By configuring PIP_CACHE_DIR, pip is told to cache its dependencies and
installed packages in the directory provided - which are defined as a pipeline
cache directory as well. Therefore, the cache directory gets cached in between
job runs and reused.

Conclusion: Working with the pipeline Now that the pipeline is con-
figured, it is possible to review Merge Requests based on their generated code
quality report. Also, this makes sure that every line of code is formatted in a
consistent way. When committing to a custom branch, or merging to ‘main‘,
the pipeline is evaluated and run. Project members are required to provide
conforming source code, and get hints to why their changes might not be of the
desired quality.

57

58

Chapter 9

Lane Detection

For a vehicle used in the context of autonomous driving, the ability to perceive
and understand its road environment is of high importance. One crucial aspect
of this perception is the lane detection, which involves identifying and tracking
the lanes on the road. Accurate lane detection is a fundamental building block
for many autonomous driving functions, from simple lane-keeping assistance to
complex path planning and decision-making algorithms. This section introduces
two approaches to lane detection, one based on LIDAR and on based on camera
data.

9.1 LIDAR-Based Lane Detection

LIDAR technology plays an important role in the project’s implementation of
lane detection, as the LIDAR provides essential data about the robot’s sur-
rounding. The concept here is to utilize this data to calculate and represent
lane boundaries accurately. Visual lanes as indicated by lane markings are
therefore not directly detected but are rather projected based on a given road
configuration and a rightmost boundary that is detectable by the LIDAR.

9.1.1 Preconditions

The calculation of the lane boundaries using LIDAR assumes that a certain
structure for the lanes is always present. One particular assumption is that
there always exists a wall that is detectable by the LIDAR sensor on the right
side of the road. Furthermore, the first lane always has a distance of ws to this
wall, forming a road shoulder with constant width. Additionally, every lane has
the exact same constant width, noted as wl in the following.

9.1.2 Coordinate Transformation

The process of the LIDAR-based lane detection begins with transforming polar
coordinates into the Cartesian coordinate system. This conversion simplifies
subsequent processing steps and provides a clear representation of the environ-
ment. Based on a respective angle αi and a distance value di of each LIDAR
measuring point i, Cartesian coordinates xi and yi for such point can be created
using the common formulas x = d · cos(α) and y = d · sin(α).

59

9.1.3 Boundary Detection and Lane Projection

Once in Cartesian coordinates, the system calculates the lane boundaries based
on the distance of the robot from the right wall.

In particular, this calculation uses the coordinates of the wall that is detected
by the LIDAR between 180° and 359°. Not all 179 points are used for the B-
spline approximation. With every measurement a 90° cone is aligned to the
closest point at right wall. This ensures that at every (realistic) angle the lane
can be detected.

A B-spline is then fitted to these data points, ensuring smooth and continu-
ous representation of the lane-defining wall. Using B-splines offers the possibility
to control the degree of the lane boundaries, which is useful to extend the lane
projections from straight to curved roads. For individual points of the given
B-spline, normalized orthogonal vectors are then calculated. This is done by
first calculating a tangential vector of a given point on the B-spline, normal-
izing that vector and then rotating it by 90° into the correct direction. For a
given lane n ≥ 0, these normalized vectors are used to determine the position
of the lane’s right (j = n) and left (j = n+ 1) boundary, if multiplied with the
factor (ws + j · wl).

To ensure robust lane perception, some additional mechanisms were imple-
mented. Detected lanes are always analysed by their slope and may be discarded
if the boundary has a turn in it, which is irregularly steep. This is due to the
fact that a steep turn in a lane is an indicator for a faulty calculation that
originated from an obstacle at the right side of the ego vehicle, which was mis-
taken as the boundary wall. To make sure that many subsequent faulty lane
calculations do not lead to the model and the reality

”
drifting apart“, an addi-

tional lane detection switch is added. If multiple faulty lanes are detected in a
row, the direction at which the boundary wall is assumed is switched and the
respective calculations are adjusted. This way, correct lane boundaries can still
be obtained, even when the ego vehicle is passing an obstacle.

The LIDAR-based lane detection is simple and provides good results if the
detected Lane is straight. However, steep curves pose a problem, as they can not
be reliably detected using the presented spline fitting approach. Also, even with
the side-switching, the method is not reliable if the sight line from the LIDAR to
the lane borders is obstructed. Therefore, another approach to detecting lanes
is required in order to compensate for these deficits.

9.2 Camera-Based Lane Detection

Limitations of the LIDAR-based lane detection approach, such as the require-
ment of a wall being present on the lane boundary, have motivated the imple-
mentation of a camera-based alternative approach. Camera-based lane detection
allows the vehicle to detect lane markings using visual data from its onboard
camera.
The project group has explored two distinct methods for lane detection in cam-
era images: classical computer vision techniques and an AI-driven approach.
The latter, overcoming limitations of the former, has been adopted.

60

9.2.1 Classical Computer Vision Approach

The initial approach for the detection of lanes was based on the Hough Line
Transform, which is a technique for detection of straight lines within images [39].
This method followed several stages as seen in Figure 9.2 (outputs are visualized
in Figure 9.1):

1. Region of Interest (ROI) Segmentation: Isolation of the road segment from
the camera’s field of view.

2. Preprocessing: Conversion to grayscale, blurring, edge detection via the
Canny algorithm and morphological closing to prepare the image for the
Hough Transform.

3. Hough Line Transform: Detection of potential lane line candidates in the
preprocessed image.

4. Postprocessing: Filtering and clustering of the lane line candidates.

5. Bird’s-eye View Transformation: Transformation of the coordinates for
further use.

6. Lane Line Extension: Scaling and extrapolation of the detected lines.

7. Lane Data Calculation: Estimation of the vehicle’s current lane and the
positions of adjacent lane boundaries.

(a) Preprocessed input image (b) Processed detected Hough-Lines

(c) Bird’s eye view of the input image (d) Bird’s eye view of the Hough image

Figure 9.1: Outputs of the stages of the initial approach.

The segmentation ensures a focus on the road, while the preprocessing steps
reduces noise and filtered unnecessary information from the image to ensure
better performance of the Hough Line Transform. Since the Hough Line Trans-
formation has a tendency to detect multiple lines where there should only be one,
clustering and filtering of outliers allows increases the precision of the detection.

While this approach performs well in predefined simulation scenarios, it isn’t
sensible in the less refined real-environment setup. Additionally, a large caveat

61

of it is the inability of detecting curved lines, which is a crucial aspect for the
project group, and thus necessities the development of another approach.

9.2.2 AI Enhanced Implementation

In contrast to the first approach, the AI-driven approach solves the problem
of lane detection using a pre-trained AI model, specialized in the detection of
lane lines on highways. The followed approach, called

”
Ultra Fast Lane De-

tection 2“ (UFLDv2) uses a ResNet-18 based model trained on the TUSimple
dataset [83], which consists out of 6408 road images on US highways with the res-
olution 1280×720 pixels. UFLDv2 delivers a high-performance solution to lane
detection suitable for the computational constraints of this project. The mod-
els’ architecture is described by Qin et al. also providing code for it [69], [16].
Initially the implementation was using the first version of UFLD [68], [15]. The
switch to UFLDv2 was made as it uses an improved model architecture and
generally detects lanes more reliably compared to UFLDv1, as can be seen Fig-
ure 9.4.

An important consideration when researching the feasibility of the usage of
an AI model for this task was the limited computational power accessible. Since
the project requires for the computation to run on a Laptop CPU or on the TB
itself, most available AI models are not suitable. A solution for this issue is
provided by Kai Chun, offering an implementation of UFLDv2 in the ONNX
format [36], [30]. The ONNX version of the model itself can be downloaded
from a pretrained model collection [64]. ONNX is an open source library, which
amongst other things provides a hardware optimized format for AI models,
allowing performant inference on CPUs.
The lane detection process in this approach works as follows (Figure 9.3):

1. Cropping: Cropping of the captured images to the 4:3 aspect ratio which
is required for the model.

2. Inference: Passing of cropped images to the AI model, which detects the
lane lines and returns their coordinates Figure 9.4.

3. Bird’s-eye View Transformation: Transformation of the coordinates for
further use Figure 9.7.

4. Lane Line Extension: Scaling and extrapolation of the detected lines.

5. Lane Data Calculation: Estimation of the vehicle’s current lane and the
positions of adjacent lane boundaries.

The last three steps remained the same as in the initial approach, as they are
independent of the actual lane detection method.

9.2.3 Preconditions

For optimal performance, the road texture used for the Gazebo simulation of a
highway environment has been updated with a higher resolution one. Addition-
ally, the camera height and angle have been adjusted to match the perspective of

62

Figure 9.2: Stages of the lane detec-
tion in the original approach.

Figure 9.3: Stages of the lane detec-
tion in the AI enhanced approach.

Figure 9.4: Comparison of detection using the first and second version of UFLD.

Figure 9.5: The lane lines detected by
UFLDv1.

Figure 9.6: The lane lines detected by
UFLDv2.

the cameras used for the TuSimple dataset. These aspects influence the model’s
ability to discern lane lines and present a challenge when using the actual TB,
as the real-world camera setup and environment are not as easily adjustable as

63

Figure 9.7: The image after the perspective transformation.

the simulated counterparts.

9.2.4 Bird’s-eye View Transformation

In order for the lane line coordinates detected in images to be compatible with
the internal coordinate system, a Bird’s eye view transformation needs to be
applied to them. This is done by using predefined source points and destination
points for the transformation, which have been manually established using the
images captured by the camera. As the real camera and simulated camera differ,
the adequate camera lane detection configuration must be loaded. Using the set
points, a transformation matrix is computed and applied to the detected lane
line coordinates to acquire the Bird’s eye view coordinates. The implementation
of this functionality is done based on Falaleev [25].

9.2.5 Lane Data Processing

Lane lines below a certain length are filtered, as short lane lines detected by
the model tend to be more inaccurate, based on performed experiments. As
the camera perceives certain distance in front of the vehicle (varying on the
camera’s field of view), the lane lines are also extrapolated “backwards”. This
is done because the lane coordinates at the location of the vehicle are required
for further calculations. Finally, the lane line coordinates are rescaled to match
the dimensions of the internal coordinate system.

9.2.6 Advantages and Limitations

The camera-based approach is an alternative to the LIDAR-based lane percep-
tion and has advantages such as not requiring a border wall next to the road
for it to work. Furthermore, it is able to predict coordinates of lane lines which
are partially obstructed by objects such as other vehicles on the road, which the
LIDAR approach cannot.
However, this approach is not perfect as the nature of the AI model makes using
it to acquire reliable lane information difficult. The detection is affected by var-
ious factors such as lighting conditions or reflectivity of the road. For instance,

64

as depicted in figure Figure 9.5 the first version of UFLD did not detect the
left lane line, even though it is visible. This inconsistency may originate from
the pretrained models training data, which consists of images captured using a
camera with a different field of view and resolution. Furthermore, it was found
through testing that the lane lines making up the boundaries of the current
lane the vehicle is on, are detected most consistently, and the general detection
seems to struggle while the vehicle is driving over lane lines (e. g. during a lane
change). The environments used in the project deviate from the environments
in the models training data, which also likely contributes to the observed dis-
crepancies as the model has limited generalization capabilities.
A consideration to be made is the retraining of the AI model using the same
dataset (TUSimple), but adjusted for the available camera. This improvement
should allow the model to provide better predictions for the images captured
by the camera used in this project and thus increase the quality of the lane
detection.

9.3 Current Lane and Relative Position in Lane
Calculation

The process of determining the vehicle’s current lane and its relative position
within that lane is independent of the detection method used, as both the LI-
DAR and camera-based approaches provide processed lane data in the same
format. To estimate the current lane, the system calculates the distances be-
tween the vehicle and lane borders using the average distance towards the points
along the borders. Consequently, the two lane borders that are the closest to
the vehicle allow identification of the index of the lane the vehicle is currently
on. Following the estimation of the current lane, the lane width is calculated
based on the average distances between the lane border points of the current
lane. The width is then used to determine the relative position of the vehicle
within the lane by dividing the distance to each lane border by the lane width.
The validity of the detected lane is additionally assessed by checking whether it
falls within a reasonable threshold relative to the predefined lane width of the
environment.

65

66

Chapter 10

Object Detection

For a vehicle used in the context of autonomous driving, the ability to detect
obstacles within its environment is critical, as obstacles need to be perceived
to evade them and drive safely. The TB can perceive obstacles in two ways:
through images with a camera and distance measures with a LIDAR. The im-
plementation of both methods is described in the following sections, along with
their advantages and disadvantages.

As a simplification, the following assumptions are made for static obstacles:

• Static obstacles are as wide and as long as the lane’s width, so the unscaled
dimensions are 0.3 m × 0.3 m.

• Static obstacles are always positioned on exactly one lane, conversely a
static obstacle has to be positioned parallel to the lane it is on.

• In between two static obstacles there is at least one obstacle width of free
space.

10.1 LIDAR-Based Obstacle Detection

In the context of LIDAR-based obstacle detection, there are various existing ap-
proaches. Here, the focus will be on LIDAR obstacle detection based on filtering,
segmentation, and clustering of point clouds created from two-dimensional LI-
DAR data. Such an approach is for example described by Likhita et al. [49],
Soitinaho et al. [81], and Peng et al. [62]

Peng et al. [62] introduce an obstacle detection and obstacle avoidance
algorithm based on 2D LIDAR by filtering and clustering the laser-point cloud
data. Their approach is divided into three steps. First, they filter the raw LI-
DAR data. Then, the result is preprocessed: the laser-point cloud is segmented
into several laser-point clouds and, next, merged if the clouds are close to each
other. In the end, each cloud gets a shape assigned depending on the points
they contain. They differentiate between circles, rectangles, and lines. For fur-
ther insights, Mochurad et al. present a comprehensive overview of different
downward- and horizontal-looking 3D and 2D and LIDAR obstacle detection
approaches and their advantages and disadvantages [57].

The LIDAR obstacle detection for the TB is based on the approach by
Peng et al. [62].

67

For the LIDAR-based obstacle detection, the 360 Laser Distance Sensor
LDS-02 is used. This 2D LIDAR detects distances 360 degrees around itself.
Each new scan contains up to 360 scans and information about the angle in-
crement between each. Since the simulated environment always returns a value
for each degree, but the real-world LIDAR does not, there is a need to handle
the disparity. Using interpolation the real-world data is augmented to assure
it contains 360 values. The LIDAR is placed horizontally on the TB and can
therefore only detect obstacles as high as the TB. Any obstacle smaller than the
TB can only be detected using the camera.

An obstacle can only be detected if it is not hidden behind another obstacle.
Furthermore, other vehicles must also have a LIDAR at the same height as the
detecting vehicle to be identifiable. The identified LIDAR’s shape must also
have a set radius of 0.03 meters (unscaled).

Figure 10.1: LIDAR Data

LIDAR operates by emitting laser pulses detecting their reflections from
objects. If there are no objects obstructing its path, each pulse is of the same
length. However, if there are objects, the lengths differ. This can be seen in the
example depicted in Figure 10.1.

The vehicle is placed in the middle of the road and the LIDAR mounted
on top of it detects five different barriers. Considering the vehicle is heading
along the x-axis, on the left and right of the detecting vehicle are the road walls.
Directly behind the detecting vehicle, there is a vehicle, and another one is front
left of it. A static obstacle is located at the front right.

The LIDAR-based obstacle detection needs four steps to process the raw
LIDAR data into an interpretation like exemplarily done above. These steps

68

are depicted in Figure 10.2, Figure 10.3, Figure 10.4 and Figure 10.5.

Initially, the LIDAR data has to be preprocessed since it only provides dis-
tance measurements in different directions. When receiving LIDAR data, it
may not always contain a distance for every degree, resulting in a list of varying
lengths but at most 360 values. To address this variability, this list is linearly in-
terpolated first as explained before. This way, the obstacle detection can always
expect 360 values whether used in simulation or in the real world.

Figure 10.2: LIDAR-point cloud in range

The 360 distance measurements are then converted into points relative to
the vehicle’s position as seen in Figure 10.2. Since the LIDAR can also detect
the street wall (if there is one), some of the points might represent the wall and
not an obstacle on a lane. Because of this, points that are on the edge or outside
of the street are removed. This is depicted in Figure 10.3.

The remaining points are divided into clusters defined by the distance be-
tween the points. If two points are at most a set threshold distance apart, they
are put into the same cluster. The threshold distance is chosen as the width
of a vehicle. Following, points the vehicle can not drive in between belong into
one cluster and are seen as one obstacle. Using the example from Figure 10.3,
the result would be three clusters as seen in Figure 10.4

Each resulting cluster forms a potential obstacle. In the next step, a circle-
fitting algorithm is used to determine what kind of obstacle the cluster rep-
resents. The cluster should either fit the dimensions of the LIDAR on top of
the other vehicle or the dimensions of a static obstacle. If it does not match
either, the obstacle is detected as an unknown obstacle type. Additionally, if
the detected obstacle is static, it is further evaluated whether the obstacle is

69

Figure 10.3: LIDAR-point cloud in range without street borders

Figure 10.4: From LIDAR-point cloud generated clusters

70

Figure 10.5: Detected obstacles

seen from the front (as a line) or from the side (as two lines). Detected and
identified obstacles are then added to the currently detected obstacle list. This
step’s result is represented in Figure 10.5, where three obstacles have been de-
tected with LIDAR-based obstacle detection: one static obstacle and two other
vehicles. Since the figure’s axes are not equal, the obstacles’ form is seemingly
distorted.

Finally, the environment model is updated with the newly detected obstacles.

10.2 Camera Based Object Detection

Various ways of camera-data-based object detection have been researched and
evaluated as a part of the project. Considerations included training an object
detection AI model (such as YOLOv7) or using traditional computer vision algo-
rithms. The AI based approach, often involving convolutional neural networks
(CNNs), is known for achieving high accuracy in object detection. However,
its complexity and (usually) resource-intensive nature makes it less ideal for the
scope of this project. Traditional computer vision algorithms offer a less compu-
tationally demanding alternative, but they might require additional conditions
to be met.

This project uses a classical approach, enabled by the fact that full control
over the environment and the vehicle is available: Fixed synthetic markers with
a known layout. Strategic placement of such markers on to-be-detected object
ensures optimal visibility and ease of detection. The simplicity of this approach
translates into faster processing on the TB, making it an efficient solution.

71

Moreover, the required preparation of the markers on the detectable objects
leads to the natural elimination of possible false-positive object detections.

10.2.1 Marker Systems

During research of object detection using fixed markers, two prominent state-of-
the-art marker systems came into focus: AprilTag [2] and ArUco (ArUco) [61].
Both methods employ square markers, based on a visual bit representation of
unique ID patterns. They facilitate rapid and accurate identification, making
them suitable choices for applications with limited resources.

AprilTag markers are slightly more complicated to generate than ArUco
markers, however, pre-existing repositories that contain different AprilTag-families
eliminate the need for individual marker generation. Additionally, the detec-
tion of AprilTag markers is implemented in a ROS package, which made it
seem like a preferable choice considering that the TurtleCar application already
uses ROS. However, the AprilTag package is not fully migrated to the second
version of ROS, which complicates its actual utilization and would require ad-
ditional debugging. On the other hand, the ArUco marker system is included in
the OpenCV python package, which is already used by the TurtleCar applica-
tion. Integrating the generation and detection of ArUco markers was therefore
straightforward for the existing architecture and was the preferred choice.

10.2.2 ArUco Marker

The ArUco library allows the detection of ArUco markers along with their dis-
tances. The requirement of making the marker detection as reliable as possible,
rendered the ArUco marker family DICT 4X4 50 the most promising. 4×4 indi-
cates the bit size, whereas 50 is the number of available markers in that family.
Choosing the minimum in both regards ensures a maximum Hamming Distance
between the marker IDs and better overall detectability.

10.2.3 Environment Preparation

For the successful usage of fixed markers, preparation of the controlled envi-
ronment is necessary in both simulation and reality. For that, all marker IDs
available in the chosen marker family are mapped to an object type:

• IDs 0 − 9: Other vehicles

• IDs 10 − 39: Cuboid obstacles

• IDs 40 − 49: Road signs

40: No overtaking

41: Overtaking allowed

42: 80 km/h speed limit

43: No speed limit

The placement of markers follows a respective strategy for the different ob-
ject types. Vehicles are equipped with a single marker positioned on their backs,

72

serving as a distinctive
”
license plate“. Cuboidal are marked with four distinct

markers, placed on each corner of their detectable faces. This enables the calcu-
lation of the obstacle’s size and rotation along with the distance. For the current
scenarios of the project group, these calculations are not strictly necessary since
an obstacle in a lane results in a totally blocking that lane independently of its
size and orientation. However, this may be useful for future driving functions.
Road signs use single markers and are placed on an elevation along either the
left or right side of the road.

(a) ArUco board used for camera calibration.

(b) Example image used for the camera
calibration in reality.

(c) Example image used for the camera
calibration in simulation.

Figure 10.6: Camera calibration for ArUco detection.

To achieve optimal precision in both the simulated and the real environment,
an initial one-time camera calibration process needs to be conducted. This
process obtains camera parameters, which can then be utilized for camera based
detection tasks. For the calibration, a special board with ArUco markers that
can be seen in Figure 10.6a is used. With a set of roughly 50 images that capture
the calibration board from different angles, the ArUco library is used to acquire
parameters of the camera, which are then saved to a config file for further usage.
Examples of such images can be seen in Figure 10.6b and Figure 10.6c.

73

(a) TB marker in reality. (b) Obstacle marker in reality.

Figure 10.7: Marker layout in real environment.

(a) TB marker in simulation. (b) Obstacle marker in simulation.

Figure 10.8: Marker layout in simulation.

Additionally, to allow the object detection to accurately calculate distances
to the markers, cohesive marker sizes withing reality and the simulation are
required. To determine the optimal marker sizes, markers were experimentally
printed and attached to the respective objects in reality. TBs in the real envi-
ronment impose some restrictions, as their license plate should not restrict any
other sensors or the overall mobility of the TB. After the optimal marker sizes
were established, fitting 3D models could be created. The resulting layout for
the TB markers can be seen in Figure 10.7a and Figure 10.8a and those for the
obstacles can be seen in Figure 10.7b and Figure 10.8b.

10.2.4 Marker Detection

The actual marker detection process is mostly independent of whether the en-
vironment is simulated or real, apart from the correct camera calibration that
has to be loaded. The detection simply uses the available camera images and

74

leverages the ArUco library to detect all markers in the image. After that, the
same library is used to calculate the coordinates of the individual markers. For
each one detected, a fitting Obstacle object containing the obstacle type and
information about its state is created, and stored in the TurtleCar-Core Model.
The data stored in the TurtleCar-Core Model is updated in each detection cycle
and handled further by adequate observers and renderers.

10.2.5 Road Sign Detection

In addition to detecting obstacles, the TurtleBot is able to recognize road signs,
which are marked with the appropriate markers as outlined in 10.2.3. Currently,
the system is capable of identifying four types of road signs. For the real-world
implementation, these signs were crafted from cardboard, as can be seen in
Figure 10.9. Meanwhile, in the simulated environment, a special world model
including of these road signs has been created.

It is crucial for the TurtleBot to maintain awareness of road signs locations to
ensure it has knowledge of current road rules. Hence, road signs along with their
detected type and coordinates are saved within a obstacle history for a defined
amount of time. This way the positions of road signs which move outside of the
TurtleBots detection area can still be tracked. The calculation of the coordinates
of road signs uses the data obtained from the ArUco detector to determine the
position of each road sign within the global coordinate system.

Figure 10.9: Cardboard road signs created for the real environment.

10.2.6 Obstacle Tracking

With the capability to detect obstacles using the camera and LIDAR, a way to
keep track of obstacles is needed. This process is intended to not only calcu-
late the speed of each detected obstacle but also estimate its current position,
acknowledging sensor errors and minimizing their effects.

75

Obstacle Identification

A difference between the two detection mechanisms is that the camera assigns
IDs to the obstacles it detects based on the marker that was captured. The
LIDAR cannot do that as it only detects obstacles based on shape. So while
the obstacle identification is already implemented through the ArUco markers,
it has to be done independently for the obstacles detected by LIDAR since they
initially have no ID.

When the obstacle observer finds an obstacle without an ID it is responsible
for the ID assignment. The observer checks already detected and identified
obstacles and compares their type and position with the unidentified obstacle.
If the positions of the two obstacles are similar enough the observer assumes
that both obstacles are the same. When dealing with dynamic obstacles, if
an unidentified obstacle occupies the predicted position of a known moving
obstacle, the observer also infers that both obstacles are identical. This way the
unidentified obstacles are assigned the ID of the already identified obstacles.
However, if a similar obstacle can not be found, the LIDAR detected obstacle
is assigned a new ID, distinct from all IDs the camera might assign.

This way, both the LIDAR and camera can work simultaneously and in cases
where both detect the same obstacle the detections from the camera are kept
while ones from the LIDAR are discarded.

10.2.7 Obstacle History

To monitor the states of identified obstacles, a history containing their past po-
sitions is maintained. This history allows for determining an obstacle’s velocity
and comparing its observed behavior against expectations.

The obstacle history is a data structure, that keeps track of previous posi-
tions for each detected obstacle. Each entry in the history belongs to exactly
one obstacle. Information about the last six positions, the obstacle’s ID, and
the type of obstacle are saved here. Using this history, the estimated speed of
the obstacle is calculated using a sliding window approach.

Due to sensor inaccuracies obstacles might not be detected in every detec-
tion cycle of the sensor. However, since obstacles generally don’t unexpectedly
disappear, keeping track of existing obstacles and filling in missing ones allows
for counteracting of sensor inaccuracies. To implement this, the observer keeps
track of when the obstacle was detected last and predicts its position in case it
is missing unexpectedly. This way it can be re-detected at a later time point
and still mapped to the correct previously detected obstacle. Another benefit
is that obstacles are still tracked even when they move out of the LIDAR’s or
the camera’s range.

Another approach would be the usage of an EKF to predict the movement of
an obstacle. Every obstacle detected would create its own EKF with which the
state of the obstacle could be estimated. If the same obstacle would be detected
again the EKF could be updated with the new data. If not, then the EKF
would return the predicted state. An EKF has the advantage that it would be
easy to fuse the information of the camera and lidar obstacle detectors. Due to
priorization of other tasks it was decided not to implement an EKF for this use
case.

76

10.2.8 Determining Relative Velocities

By processing detected obstacle data, the relative velocity towards each obstacle
is calculated. This calculation allows the identification of moving obstacles and
potential hazards for collision avoidance, it works as follows:

1. Velocity Components: The x and y components of both the ego vehi-
cle’s and the obstacle’s velocity are calculated. The velocities are decom-
posed into their components using the following equations:

vego,x = vego · cos(θego)

vego,y = vego · sin(θego)

vobstacle,x = vobstacle · cos(θobstacle)

vobstacle,y = vobstacle · sin(θobstacle)

where vego and vobstacle are the magnitudes of the ego vehicle’s and obsta-
cle’s velocity, and θego, θobstacle are their headings.

2. Relative Velocity: Relative velocity components between the ego vehicle
and the obstacle are calculated.

vrel,x = vego,x − vobstacle,x

vrel,y = vego,y − vobstacle,y

3. Vector to Obstacle: A vector pointing from the ego vehicle to the
obstacle is computed.

r⃗to obstacle = (xobstacle − xego yobstacle − yego)

4. Dot Product and Distance: The dot product is a scalar that measures
the magnitude of one vector in the direction of another. It’s needed here
to calculate how much of the ego vehicle’s relative velocity is directed
towards the obstacle.

vrel,magnitude =(xobstacle · vrel,x)

+ (yobstacle · vrel,y)

∆d =
√

(xobstacle − xego)2 + (yobstacle − yego)2

5. Relative Velocity: The relative velocity along the line of sight is calcu-
lated by dividing the dot product by the distance to the obstacle.

vrel =
vrel,magnitude

∆d

Detected moving obstacles are considered within the alert range dalert, which
is currently set to 200 m, if their distance to the ego vehicle is less than the prede-
fined range, and they are moving slower than the ego vehicle. These calculations
provide data needed for utilization of various driving functions such as the Lane
Change Assistant (LCA).

77

78

Chapter 11

Path Planning

In this section, the planning of paths for a vehicle is described. First, Path Plan-
ning and Trajectory Planning are defined, and context to these topics within the
project group is given. Next, the implementation of Path Planning is explained.
Also, the end of the section contains guidance for building and integrating a cus-
tom path planning module.

11.1 Definitions and Context

First, Path Planning is different to Trajectory Planning, and an introduction to
what both of these terms mean in the context of the project group is given. Fur-
ther references and mathematical function definitions are given by Pham [63].

Path Planning A path P is a continuous function which connects a start
qstart and a goal qgoal in a coordinate system. Therefore, the domain of P
is [0, 1] and its co-domain is C, i. e. , the coordinate space that is used. P is
devoid of any time information, and only resembles the geometric component.
When enriching it with time information, it becomes a trajectory [63]. For us,
planning a path means to plan out a geometric ordered list of points that the
robot should follow, disregarding any time information.

Trajectory Planning A trajectory Π is a path P endowed with a time pa-
rameterization s. s is a strictly increasing function, which gives the position on
the path for each time instant t. Thus, the same path P can give rise to many
different trajectories Π [63]. For us, planning a trajectory means to take into
account time information to the planned path.

At the current state of the project group, trajectories are not planned, only
paths. Planning trajectories would involve many more considerations, which
have not been prioritized as of now.

11.2 Implementation

The architectural overview of the path planning implementation can be seen
in Figure 11.1. It closely resembles Figure 7.1, but elaborates more on the path
planning part.

79

Figure 11.1: Architectural overview with the path planner.

11.2.1 Planning the Path

In order to plan a path, the middle of the border points from the lane data
created by the lane sensors is calculated. This creates a path along the center of
a lane. The path is visualized via the LanesRenderer. See Chapter 9 for more
information about how the lane data is created and processed.

11.2.2 Example images

In this section, example images for the path planning module are demonstrated.
The snapshots were taken directly from the debugging tool, where orange points
visualize paths and yellow points indicate lanes.

80

Figure 11.2: An ordinary
path

Figure 11.3: A more com-
plex path

Figure 11.4: Lower bor-
der interpolation resolu-
tion

Figure 11.5: Higher in-
terpolation resolution for
the border

Figure 11.6: Higher sam-
ple rate and offset to the
left of the border

81

82

Chapter 12

Testing driving functions

12.1 Testing Concept

In this secion the approaches used for testing the implemented autonomous driv-
ing functions are described. There are many different approaches and method-
ologies used in state-of-the-art development of autonomous vehicles. First an
overview about these is given and put in relation to the project group’s approach
to validate the driving functions.

12.1.1 Preliminaries

Song et al. collect a number of different available approaches and outline
standards and pratices used in industry. Conventional aproaches for testing in-
clude unit testing, component testing and code review [82]. These are common
methods especially in software development and thus the project group inte-
grated these basic approaches in the workflow (see Section 18.3) and the defi-
nition of done (see Section 18.4) for different tickets. However, Song et al.also
describe that the approaches are not adequate to capture the complexity of
autonomous systems, but should still serve as a starting point for validating
parts of autonomy software. The limitations are for example acknowledged by
Wang et al. [95]. Methodologies seldomly focus on the whole complexity of
autonomous systems, but only on specific functions and provide only limited
testing of autonomous vehicles. To overcome the limitations of conventional ap-
proaches, more autonomy-focused techniques have been developed. Such tech-
niques include model-based testing, combinatorial testing, search-based testing
and scenario-based testing. The first is used to strictly model the system from
its operating domain to its behavior, which in turn can be used for test-case
generation. The latter two, in contrast, describe approaches, that identify citical
scenarios using learning methods. By comparing differing test cases and their
results, these can be optimized for challenging test-cases using different critical-
ity metrics and different space exploration methods [82]. Thus such methods
are considered to be very promising. Teige et al. from BTC-ES, one of the
project group’s partners, also describes that test case generation is their most
prominent use case. They also recognize that generating test cases based on
requirements are of increasing interest [88].

83

12.1.2 Approach used in the Group

The project group defines its test-cases based on the requirements elicitated for
each driving function. For each requirement a test-case can be derived. These
requirements however are based on scenarios initially developed by the project
group for each driving function Chapter 16. Since these scenarios don’t directly
provide any requirements and just one general run for that driving function,
research had to be done. First, since already established driving funtions were
implmented such as the LKA oder ACC, requirements could be derived from
literature. Requirements in terms of safety distances could be taken from the
StvO. But for other limitations in terms of steering angle for example research
was done in different fields like traffic psychology. In conclusion the testing ap-
proach can be thought of using a scenario as a baseline and deriving requirement
based testing from that.

12.2 Testing with Real TurtleBots

Testing TBs in real-world conditions requires a prepared environment and clearly
defined criteria for what constitutes success and failure in these conditions. The
project group has conceptually developed two primary methods for conducting
these real-life tests, detailed in this chapter.

12.2.1 Approach 1: Fully Manual Testing

For manual testing, the environment is set up to resemble a straight highway.
Depending on the driving functions under test, additional modifications to the
environment may be necessary. Possible modifications include adequate marking
of the to-be-followed path or setting up of obstacles along the highway. For
instance, to test the LCA, a path should be marked on the highway that starts in
the ego vehicle’s initial lane and transitions to an adjacent lane. The ego vehicle
must be launched manually, and the LCA activated at the correct moment. The
key observation is whether the ego vehicle adheres to the marked path and stays
within pre-established boundaries, concluding the maneuver in the intended
lane. Success is determined if the ego vehicle meets these conditions. Testing
the LKA is simpler and only requires simple markings making clear which lane
the ego vehicle should follow. The ego vehicle begins this test slightly angled,
after starting to drive and activating of the LKA it should correct its heading
to maintain its lane.

Each real-life test scenario requires similarly specific criteria and conditions,
which must be manually verified for every test. While straightforward and easy
to set up, this method is prone to human error and variability, making it less
reliable. Nonetheless, it can offer valuable insights into the vehicles’ driving
capabilities.

The current real life testing approach employed by the project group follows
this approach, albeit without any markings or additional modifications to the
highway for simplicity.

84

12.2.2 Approach 2: Bird’s Eye View Camera

This conceptual approach, contrasting with the manual method, allows for a
more automated testing process for the vehicles but demands more complex en-
vironmental setup. It involves a static camera mounted overhead, capturing the
entire highway in its view. This setup allows for an automated testing process
similar to that used in the testbed (see Chapter 13), albeit with extra steps
required to detect the relevant environment features and objects. The environ-
ment captured by the camera must be translated into a digital format, with
real-world coordinates matched to those in the simulation. Markers for object
detection can be placed on the road borders, obstacles, and the TBs themselves
(see Subsection 10.2.1) to facilitate tracking and coordinate matching. If the
camera and environment are able to stay fixed in a static position, an alternative
would be to use hard-coded coordinates designating the positions of the highway
borders and lane lines. This facilitates only needing to track the vehicle with a
marker.

This
”
Bird’s Eye View Camera“ setup would enable more autonomous con-

ducting of tests by loading scenarios from predefined files that the real TB would
then execute. The overhead camera would monitor the vehicle’s performance,
comparing its actual behavior against the expected one defined in the accord-
ing test specification files. For instance, the LKA test could be conducted in
a manner similar to the manual approach but observed and evaluated through
automated scripts that verify the vehicle’s adherence to its lane, providing a
more objective and efficient testing solution.

As this is a conceptual approach that has not been implemented by the
project group, no infrastructure for usage of automated real life tests exists.
However, this concept offers an opportunity for future project groups looking
to enhance the automation and precision of real-world TB testing.

12.3 Testing in the simulation

To be able to test developed driving functions more efficiently, the project group
developed a dedicated software, called

”
TurtleCar Test“. Please refer to the next

chapter for in-depth information on this topic.

85

86

Chapter 13

TurtleCar-Test

TurtleCar-Test (also called Test-Platform) was developed by the project group
to test the implemented driving functions on a TB. In collaboration with Gazebo,
it allows interactive, headless, scenario-based testing. In this section, related
work is presented and then the architecture of TurtleCar-Test based on require-
ment analysis explained. Furthermore, the creation of tests is explained. Tuto-
rials and examples on its usage can be found in the repository’s README [32].

13.1 Traffic Sequence Charts

Traffic Sequence Chart (TSC) proposed by Damm et al. provide a specifica-
tion language for defining test scenarios for autonomous vehicles [19]. It allows
capturing of their behavior in all possible traffic situations. A TSC specification
consists of a world model that defines classes of objects (e. g. cars) together with
their attributes (e. g. position and velocity) and the dynamics of moving objects,
represented by a set of snapshot charts. A symbol dictionary links graphic sym-
bols to their respective objects in the world model. These charts can then be
translated to formula in first-order multi-sorted real-time logic.

Snapshot charts describe the evolution over time (e. g. via a snapshot se-
quence) and are used to visually depict potential traffic situations. They may
contain

• present objects,

• relative placements of objects,

• defined absolute distances between objects,

• timing constraints, and

• so-called somewhere- and nowhere-boxes to specify the presence of an
object somewhere inside an area or the absence of an object inside a
certain area.

Also, they can be composed of premises and consequences. An example
snapshot sequence is given in Figure 13.1.

The first two snapshots in the dashed hexagon on the left define the premise,
the consequence is specified via the snapshots right of the hexagon. The premise

87

Figure 13.1: Change lane to avoid collision, if the next lane is free [19]

denotes that there is an obstacle in front of a car. Both are on the same lane
and less than d1 meters apart. From d4 to d5 there is no car to the lane left
of the car (second snapshot). If the premise is fulfilled, the car has to change
lanes to avoid collision (last three snapshots).

The TSCs exhibit possibilities to (relatively) place objects, define their at-
tributes (e. g. velocity), define areas and denote premises and expected conse-
quences. These possibilities were also made available in TurtleCar-Test. How-
ever, the TSC specification language was not adopted for TurtleCar-Test specif-
ically, since the effort is considered too high while offering no significant advan-
tage in terms of comprehensibility. Even so, in the future, there could be an
extension to TurtleCar-Test that allows for the generation of test cases for the
Test-Platform from logical formulas generated by TSCs.

13.2 Architecture

Figure 13.2 depicts the simplified architecture of how TurtleCar-Test communi-
cates with the outside world. TurtleCar-Test introduces two main features for
writing and executing tests: the Trigger-System (see Subsection 13.2.1) and a
Simulated Driver (see Subsection 13.4.4). The Trigger-System receives informa-
tion from the Gazebo simulation and executes specified actions when specified
conditions are met. The Simulated Driver acts as a human driver would and
has control over steering and throttle. The Trigger-System and the Simulated
Driver in collaboration ensure that the dynamic behavior can be defined in a
way that the test requires. These features are further explained in the following
sections.

The Gazebo Simulator provides a simulated world, in which the vehicle can
be spawned and its condition can be monitored. TurtleCar-Test starts this
software at the start of each test and stops it as well, ensuring that no remnants
from previous tests interfere with followup tests. With the Test-Platform’s
Test-Specification-Files, it is possible to define reproducible environments for
accurate testing.

The TurtleCar-Core software is also started by the Test-Platform, making
it as concise as other testing frameworks like pytest.

13.2.1 Trigger-System

The Trigger-System evaluates data coming from the Gazebo simulation sys-
tem. It has an internal state containing all Triggers and thereby allows complex
testing conditions. The system’s structure is visualized in Figure 13.3

The Trigger-System evaluates simulation information from Gazebo based on
user-specified Triggers. When writing the testing specification, the programmer

88

Test End

IN_STATE
ONCE

Trigger-System

EXECUTE

Actuator Data

TurtleCar Core

Sensor Data

Bot

Test Result
Seldomly

(several seconds in
between

commands)

Frequently
(a few miliseconds in
between commands)

Simulated
Driver

Sensor DataDriver's Action

Change of Driving Strategy

Gazebo

Position Data of all Objects

Simulates

State Change

Simulates
ROS Data

Figure 13.2: Architecture of TurtleCar-Test

can formulate testing conditions and their resulting actions in the form of those
Triggers. A Trigger is made up of three components:

1. (optional) State

2. (optional) Conditions

3. Actions

Defining such a trigger is possible in several ways:

Building a Trigger

Trigger .state(...) .once(...)

.immediately()

.execute(...)

89

Position Data
of all objects

Trigger-System

Trigger

IN_STATE
state

ONCE
condition

EXECUTE
action Test End

Change of
Driving Strategy

State Change

Or

examines

Figure 13.3: Structure of the Trigger-System

In code, it looks like this:

Trigger.in_state(

<State>

).once(

lambda: <Conditions>,

).execute(

<Actions>

)

As the state and condition are optional, a trigger can also be written as shown
in the following.

Trigger.immediately().execute(

<Actions>

)

This is used, when an action should run at the start of a scenario, or in
combination with the state-check to execute actions when entering a state.

The state refers to the current state of a state machine. (see Section 13.4)
It is useful to differentiate, in which stage of the test-scenario a Trigger should
be checked. For example, when overtaking, the minimum distance between the
cars should not remain the same throughout the entire test.

This way, it is decoupled from TurtleCar-Core’s internal state. If TurtleCar-
Core behaves in an unexpected way - e. g. by outputting the wrong velocity
values - the test-outcome is still based on the observed behavior of the vehicle.

The state is not constantly being checked. Only when a state machine

90

changes its state, will all triggers state-checks be evaluated. Triggers with a
matching state-check will be placed in circulation and their condition will be
regularly checked, while Triggers, where the state-check didn’t match will not
be checked, to not waste performance.

The condition is a free-form python lambda expression, which has to return
something truthy, optimally a boolean. This expression is evaluated, every time
the Test-Platform receives updated positional data for a simulation object from
Gazebo. Whether a condition is met, is based solely on the data given to the
Trigger-System by Gazebo.

Conditions can be formulated with the helper-methods provided by TurtleCar-
Test. They allow checking positional and temporal constraints, as well as other
aspects of the robot under test. That includes but is not limited to:

• the absolute position,

• the velocity,

• the steering angle,

• the activated driving functions,

• the time elapsed between certain points in the test procedure,

• the distance to other objects or actors, and

• the position in relation to other objects or actors.

Should the condition be met, the list of actions associated with this Trigger
will be executed, and the Trigger will be removed from circulation. A trigger
can never execute twice. An Action can be one of the following:

1. a positive or negative test outcome, followed by the end of the test

2. changing the current state of a state machine

3. starting, stopping, or resetting a Timer

4. changing the currently active driving-function

5. changing how the simulated driver acts

13.3 Timers

One or more timers can be specified in the test scenario specification file. It can
be started, stopped, and reset as one of the actions of a Trigger. The current
amount of elapsed time can also be used as a condition in a Trigger.

A timer can be useful to measure how much time has passed in-between
different points of a test. It may be used to measure the elapsed time that a car
takes to overtake another car, or as an abort, if a test fails for an unexpected
reason and no other trigger is hit, that could end the test.

A timer can also be named. Its name will then be printed in the logs for
enhanced debuggability.

91

This is how a timer is defined and used as a condition and in an action:

test_timer = Timer(name="TestTimer")

Trigger.once(

lambda: test_timer.current_time() > 1.0,

).execute(

test_timer.start(),

test_timer.stop(),

test_timer.reset(),

)

13.4 State Machine

State machines can be used to separate different parts of a test scenario. Zero
or more can be used within the same test scenario specification file. They can
be used to limit which conditions are tested for in different parts of the test. A
state machine requires a list of states and a starting state as parameters and
optionally a name. The name will then be printed in the logs for enhanced
debuggability, whenever the state machine changes its state. Every Trigger
can include an optional check for the current state of a state machine. Such a
Trigger’s condition will not be checked until the expected state is reached. It
will also cease to be checked, when the state changes away from the expected
state.

As part of an action, a state machine can be put into the next state or set
to a specific state.

In code, the definition and usage of a state machine looks like this:

test_sm = StateMachine(name="TestSM", start_state="a",

states=["b", "c"])

Trigger.in_state(

test_sm.in_state("a"),

).immediately().execute(

test_sm.set_state("b"),

or

test_sm.next_state(),

)

13.4.1 Scenario

A Scenario is always the start of any test-scenario-specification. Its Construc-
tor allows defining the world that the Gazebo simulator should load. It also
defines a so-called Area-File path. An Area-File contains a list of named poly-
gons. These named polygons can then be retrieved and used for checking against
the position of the robot. For example, the current implementation of the sim-
ulated world contains three lanes. Their coordinates are stored in this file and
allow easy and readable checks, whether a robot is inside a lane or not. The
syntax for defining areas is as follows:

92

<area name 1>:<x1>,<y1>;<x2>,<y2>;<x3>,<y3>;...

<area name 2>:<x1>,<y1>;<x2>,<y2>;<x3>,<y3>;...

If there is no Area-File for a Gazebo Map, None still has to be explicitly
specified for this parameter. The reason for this is, to prevent the user from
forgetting to set this parameter.

There are more truly optional parameters that follow, defining the ROS
domain ID, the path from which Gazebo should load its models, and the name
of the point to which all other points are relative.

An example definition of a Scenario follows:

scenario = Scenario(

gazebo_map_path="gazebo_data/empty_road.world",

areas_map_path="gazebo_data/empty_road.areas",

optional

ros_domain_id=0,

gazebo_models_path="./gazebo_data",

base_footprint_name="base_footprint",

)

13.4.2 Robot

Placing a Robot into the simulation is as simple as calling the Constructor. It
requires a few parameters, which are important for TurtleCar-Test to associate
the correct simulation-object with this Robot.

robot id This parameter describes the unique name of this simulation entity.
All references to his object within the Test-Platform use this name to refer to
this instance

gazebo model path This parameter needs to point to a .sdf file, contain-
ing an XML-description of an object that Gazebo understands and can spawn.
Within it, the text ODOMETRY_FRAME_HERE will be replaced by this robot’s
robot_id. This is necessary, because the robot’s position information is tagged
with the robot’s odometry-frame name. Since this ID is part of the model file,
the placeholder is needed.

robot namespace This parameter should ideally match the robot_id, but
does not have to. It assigns the robot its own namespace within ROS, which
prevents multiple robots from interfering with each other.

turtlecar command This parameter is the command executed to launch
TurtleCar-Core. Technically any other program can also be started like this.
The specified programm will be launched at the start of each test and stopped
at the end. If the process does not yield to a SIGTERM after a timeout, then
a SIGKILL will be sent. The command should also include the correspond-
ing robot’s namespace via the parameter -ros-args -r __ns:=/<namespace>.
Followed by that are the spawn coordinates and rotation (or heading) of the bot.
These have to be floating point numbers and are given in real-world meters and
degrees of rotation.

93

outline Since the Test-Platform itself cannot read Gazebo model files and
only receives the center position and rotation of each robot, it has to be given
a rough outline of the robot to perform collision detection. Simple Rectangles
can be specified using the RectangleOutline. More complex outlines require a
list of vertices be given to the generalized ObjectOutline class.

What follows are optional parameters.

starting speed This parameter tells TurtleCar-Core to start its simulation
with the vehicle already rolling. This eliminates acceleration from the testing
time. This feature is currently not fully implemented. Its value can be given as
unscaled m/s.

target speed and steering angle These parameters are settings for the
SimulatedDriver to assume. These values can be overwritten from a Trigger.
The speed is given in unscaled m/s and the steering angle is given in radians.
Positive values steer to the left and negative numbers to the right. Zero is
straight forwards.

enabled driving functions This parameter tells TurtleCar-Core which driving-
functions to enable. In addition to that, the option acc_target_speed lets you
set the speed, at which the ACC should keep the vehicle, when active. The
driving-function GUI is a bit special. Its function is to enable or disable the
TurtleCar-Core graphical debugging utility (usually just called Visualizer).

An example with all these values filled out is found below:

ego_bot = Robot(

robot_id="burger_0",

gazebo_model_path="gazebo_data/template_burger.sdf",

robot_namespace="burger_0",

turtlecar_command="python3 ../turtlecar/turtlecar/main.py"

+ "--disable_gui --mode simulation --ros-args" +

"-r __ns:=/burger_0",

x=0.0,

y=0.0,

z=0.0,

rotation=0.0,

outline=RectangleOutline(length=0.10, width=0.187),

optional below

starting_speed=0.0,

target_speed=0.1,

steering_angle=0.0,

enabled_driving_functions=[DrivingFunction.LKA],

)

13.4.3 Obstacles

To add an obstacle to any world, it is sufficient to call its constructor.
There, it is required to specify its position, rotation, the shape of the object-

collision, and the path from which the gazebo model shall be loaded. This model
is then spawned at the given place.

94

The following example creates a box that has ArUco-markers on each of its
four corners. It is also a physics object, so it can fall and can be pushed.

An example that spawns an obstacle one meter in the air and two meters in
front of the bot is found below:

Obstacle(

x=2.0,

y=0.0,

z=1.0,

rotation=0.0,

outline=RectangleOutline(length=0.10, width=0.10),

gazebo_model_path="gazebo_data/box_obstacle.sdf",

)

13.4.4 Simulated Driver

The Simulated Driver has access to the same controls that a human behind the
steering wheel of a car has. It can control acceleration and steering controls.

As part of the Test-Platform, this module takes care of keeping a set speed
and direction when no driving-function is active. It can also be used to test
oversteering a lane-keeping assistant. It can be adjusted by the Trigger-System
by way of a DrivingFunctionChange or a SimulatedDriverSettingsChange.
These Objects cannot be directly created, but must instead be be created via
the helper-methods of the Robot class. This ensures the association of these
changes with a robot and a trigger, as these things can only be done as part
of an Action. The following example shows the enabling of the lane-change-
assistant and changing the settings of the simulated driver, such that it releases
the steering wheel and holds the speed at 0.1 m/s (no scaling is applied):

Trigger.immediately().execute(

bot.change_driving_functions([DrivingFunction.LCA]),

bot.change_sim_driver_settings(target_speed=0.1,

steering_angle=None),

)

These parameters can also be given when spawning a Robot.

13.4.5 Gazebo integration

TurtleCar-Test relies heavily on Gazebo for providing the simulation environ-
ment and accurate positional data of each object within the simulation to eval-
uate conditions against. The Gazebo simulation system is started at the start
of each test and shut down after its completion. During the test, it provides the
positional data via the ROS topic /tf. The data provided by this topic is ab-
solute and has no inaccuracies, unlike the simulated sensors that the simulated
robots possess.

The Gazebo simulation only sends information about the current pose of
any object. To obtain velocities, the positions are stored and the velocities are
regularly calculated from the distance the bot traveled between the last two
simulation steps. When the time between the steps is too small, this can result
in wrongly calculating very high velocities. To avoid this problem, the velocity

95

is only recalculated when the robot has moved at least one millimeter or at least
one millisecond has passed.

13.5 Implementation of TurtleCar-Test

The startup procedure is shown as an activity diagram in Figure 13.4. It begins
by starting its own ROS node for publishing and subscribing to topics. This is
used for the communication between robot, simulation, and TurtleCar-Test it-
self. It additionally starts the TransformListener, which specifically subscribes
to the messages sent by Gazebo via the aforementioned tf topic containing in-
formation about the pose of the objects in the simulation, to obtain the position
data of all simulated objects. Afterwards, the processes necessary to conduct
the tests are started in the order given in the diagram. The visualization com-
ponents are only started if the user sets the corresponding flag when starting
TurtleCar-Test.

When the Test-Platform is started, the following things happen:

The main.py is called with one or more test-files or folders as parameters.
The given locations are searched for valid python files. The following happens
for each found test-specification:
The python file is dynamically imported into the Test-Platform itself. This
creates all the objects, of which the constructors were called within the spec-
ification. After its execution, the specification is immediately unloaded again.
The scenario that this testing specification described is however stored as a
global variable in the api.py. From there, it is retrieved and the global variable
is reset. What follows, is the actual buildup of a single test.

After startup, TurtleCar-Test loops through every Trigger and checks their
state and the condition. If both are true, the associated action is executed. The
action can range anywhere from a small adjustment in the SimulatedDriver to
ending the test with a success or failure outcome. The state associated with a
Trigger is only re-checked when said state changes, while the Trigger-condition
is checked every simulation tick. Once a Trigger’s action is executed, the Trigger
will be discarded. If the action of a Trigger is a TestOutcome, then the Test-
Platform will stop the Gazebo and TurtleCar-Core processes, and exit with a
return message and a corresponding exit code.

When the user aborts the process by pressing Ctrl+C, the signal-handler in
the aborting-module catches that signal. The handler interrupts the ongoing
test and ensures an orderly cleanup and shutdown of the Test-Platform and its
processes.

Programs that are started by TurtleCar-Test, like the Gazebo simulation or
TurtleCar-Core, are launched as so-called subprocesses. Their outputs are then
redirected to appear in the terminal and logfiles of TurtleCar-Test by the class
ParallelSubprocess.

13.6 Future expansions

Currently, areas are only drawn, when the simulation is first started. While
they are moved internally for distance and area calculations, they are never
redrawn within Gazebo. This could be accomplished in multiple ways. One

96

Setup TurtleCar-Test state

Start TurtleCar-Test ROS Node

Starts TransformSubscriber to receive object positions from Gazebo

Creates Time Subscriber to receive simulation ticks from Gazebo

Starts Gazebo Server

Starts Gazebo Client

Spawns Visual Areas

Spawn TurtleCar-Core processes

Spawn Turtlebots

Spawn Obstacles

Runs

[visualization]

[no visualization]

Figure 13.4: Activity diagram of the startup of TurtleCar-Test

option would be to write a Gazebo-Plugin that listens on a ROS-Channel for
position updates and moves the areas without deleting them. A second option
would be to employ RViz2 and only publish these areas on a topic that RViz
can subscribe to, to display them. This option would also lend itself well to
creating new areas by drawing them in RViz and publishing them to a topic
that TurtleCar-Test can write to a file. The third and easiest option would be
to repeatedly instruct Gazebo to remove a moved area and recreate it at the
new position.

Since Traffic-Sequence-Charts are a well recognized standard for commu-
nicating traffic scenarios, it would be useful to either generate them from the
currently used file-format and/or consume them as scenario definitions. Because
they are made for human consumption, there is no easily parsable data-format
available. For this reason, the project group has opted not to interface with
Traffic-Sequence-Charts and leave their integration for future works.

97

98

Chapter 14

Architectural Concepts

In order to implement the various driving assistance function in such a way that
they can be combined as would be the case in a real car, there is a need for an
architecture that supports this. In this section, several architectural concepts are
described that form the basis of implementing the individual driving functions.
First, a structure is introduced that binds individual driving functions together
to form the autonomy levels described in Section 1.1. Afterwards, the usage
of MPC within this project is described, which is used to implement certain
driving functions.

14.1 Autonomy Level Architecture

This section describes two use cases which are derived from the vision (see Sec-
tion 1.1). The first use case combines the autonomy levels “no autonomy”
and “partially automated”, while the second organizes the driving functions for
highly autonomous driving.

14.1.1 Manual Driving and Partial Autonomy

This section describes the usage of the first two autonomy levels, Manual driving
and partial autonomy, since they are closely related and implemented in one
consistent architecture. The general principle is that the vehicle always starts in
manual driving mode. Afterwards the human driver has the ability to manually
activate assistance functions or deactivate them again. The inputs that can
be given by the driver are shown in Table 14.1. The table shows the input
mappings for keyboard and gamepad. Additionally, the inputs can be given via
ROS parameters for automatic testing.

The interplay of the manual and assisted driving functions can be modeled
as a pipeline. The architecture is described in Figure 14.1. The supervisor
module contains an ordered list of control modules for driving functions which
can be turned on or off. Each iteration of the control loop, it first asks the
manual control function (described in Section 16.1) for its input. Afterwards,
each controller in the ordered list that is switched on is asked for its input.
Each controller writes its output directly to the Action interface. The next
controller therefore has the possibility of overriding or altering input from the

99

Table 14.1: The keyboard and gamepad inputs for a human driver.

Function Key XBOX
Gamepad

ROS Parameter [Arguments]

Increase Ve-
locity

W Press Right
Trigger

user_input_target_speed

Decrease Ve-
locity

S Release
Right Trig-
ger

user_input_target_speed

Steer Left A B user_input_steering_angle

Steer Right D X user_input_steering_angle

Toggle Lane
Keeping

K Y user_input_toggle_lka

Initiate Lane
Change Left

Q not set user_input_set_lca [left]

Initiate Lane
Change
Right

E not set user_input_set_lca [right]

Abort Lane
Change

P not set user_input_set_lca []

Toggle Over-
taking

O not set user_input_toggle_ota

Emergency
Stop

Space Left/Right
Shoulder
Button

No parameter, send a message of
type Twist with all zero values to
topic \cmd_vel

previous controller. Some controllers may contain a planner which writes its
planned path to the Plan interface. This may also be overridden by a subsequent
controller. To avoid confusion, only one controller should therefore be allowed
to develop a plan. In the future, this may be replaced by a using global planner,
which develops a plan for all driving functions or by integrating multiple driving
functions into one unit. Therefore, the pipeline architecture described here is
subject to change. Currently, the pipeline consists of the following controllers
in this order:

1. Manual Control

2. Lane Keeping Assistant

3. Adaptive Cruise Control

4. Lane Change Assistant

5. Overtaking Assistant

These controllers are described in detail in Chapter 16.

14.1.2 Autonomous Driving

The driving functions described in Subsection 14.1.1 enable controlling the lat-
eral and longitudinal movement of the car in specific situations. Within the

100

Supervisor

2. Lane Keeping
Assistant

1. Manual
Control

3. Additional Driving
Function

Action

Transposer

activate activate activate

writewrite write

execute

Figure 14.1: Interplay of supervisor and controllers for the individual driving
functions.

individual driving functions’ operational constraints, it is up to the driver to
decide which driving functions should be enabled in which situations. For au-
tonomous driving, the same driving functions as for assisted driving are used,
but the decision process is automated. For this, the supervisor structure is
extended by introducing components called

”
Interpreters“. These interpret the

information stored in the model in order to determine the situation the vehicle is
currently in. The interpreters can also be combined with existing controllers, as
they already interpret the environment in order to determine the correct control
action. For example, an ACC always needs to check if there is an obstacle ahead
to which to adapt the speed. Therefore, it can publish that information as an
interpretation of its environment. The information gathered by the interpreters
is used by the supervisors to decide which controllers to enable. This structure
can be seen in Figure 14.2.

The supervisor consists of a state machine which is triggered by the
”
up-

date“ signal each controller cycle. When the
”
update“ event is triggered, all

interpreters are updated in order to present the current information to the su-
pervisor. After this, the transition the state machine takes is determined by
the state the supervisor is in and transition conditions based on the interpreter
information. In order to implement the state machine, a framework for building
state machines in python is used [51].

Using this concept, the following two different supervisor structures repre-
senting different driver characteristics are implemented. A detailed description
of the interpreters used can be found in Chapter 15. Likewise, the driving
functions are described in Chapter 16.

Passive Autonomous Driver

This autonomous driver always tries to stay in the current lane and match the
current speed limit. If another slower car is in its lane, it slows down and
matches the speed of that car. It never overtakes. A representation of the

101

Independent Interpreter Interpreter of Driving Function 2

Model

Supervisor

Driving Function 1 Driving Function 2

interpretation interpretation

activate/deactivate activate/deactivate

Figure 14.2: The components of the autonomous supervisor structure.

automaton describing the behaviour is shown in Figure 14.3.

Figure 14.3: The state machine encoding the behaviour of the passive au-
tonomous driver

The driver uses the LKA, the ACC and the Emergency Brake as driving func-
tions to achieve this behaviour. In the diagram, this is denoted by the action

”
start driving straight“. To determine whether it should activate the emergency

brake, it uses the Emergency Detector as interpreter which determines if there
is an object close to the front of the car. The supervisor starts in a startup
state, where it drives straight slowly for a few seconds in order to gather enough
sensor information so that the EKF can robustly estimate the vehicle’s position
and the lanes are detected. In addition to the update transition, a special fail-
ure transition goes from each state to the braking state. This models the case
that the driving function that is currently active malfunctions, in which case
an exception is thrown in the code. The supervisor catches this exception and
immediately sends a failure signal, which triggers a state change to the Braking
state. The change happens immediately, ensuring that the malfunctioning driv-
ing function does not issue a wrong command. It is assumed that the braking
function itself is not able to fail, as it only issues one static braking command

102

to the vehicle. In the next update step, the automaton will try to resume the
Driving Straight state. If it fails again, it will immediately change back to the
Braking state. Therefore, as long as a driving function malfunctions, no wrong
commands will be issued.

Maximum Speed Driver

This autonomous driver also tries to stay in the current lane and match the
current speed limit. However, if a slower car is ahead, the driver is allowed to
overtake it.

This driver is an extension to the Passive Driver. It uses the LKA, the
ACC, the Emergency Brake and the Overtaking Assistant (OTA) as driving
functions. It uses an Overtaking Interpreter to determine whether it should
overtake and the Emergency Detector to recognize the need for an emergency
braking maneuver. Similar to the Passive Driver, an error in an active driving
function results in a failure signal and the transition to the braking state. The
automaton implementing this behaviour is shown in Figure 14.4.

Figure 14.4: The state machine encoding the behaviour of the passive au-
tonomous driver

In comparison to the Passiver Driver it has an additional overtaking state,
which is entered as soon as the vehicle detects the possibility to overtake. It
stays in this state until the OTA has finished the maneuver and the vehicle is
back in its original lane.

14.2 Model Predictive Control

In this project group, the aim is to build driving functions which enable solving
different scenarios. In order to achieve this in a way that consistently provides
good results, a two-layered approach for the control strategy was chosen. A
planner calculates a trajectory and boundary conditions, which are then used
by a MPC to derive the best possible solution. This approach is heavily based
on the work of Wunderli [97] and of Kröger [44], who used MPC to achieve
optimal tracking of a given trajectory with a model racing car. The approach is
almost directly transferable as the model it uses is the same bicycle model used
in the project group, as defined in Section 5.1. This section aims to give an
overview and guidelines on how new driving functions can be implemented by
designing a problem consisting of a trajectory and boundary conditions which
can then be solved by the MPC, resulting in optimal control signals. First, an
overview over the MPC approach used in this project group is given. This also
includes information on where the project group deviated from the approaches

103

described by Wunderli and Kröger. Afterwards, an architecture is described
which incorporates the MPC and implementation guidelines are given.

14.2.1 The Model Predictive Control Algorithm

Wunderli describes how to model the trajectory tracking problem as a quadratic
problem which can be solved by existing solvers. Kröger deviates from Wun-
derli’s original approach in some ways. These deviations were incorporated in
this project group. It is assumed that a trajectory is given which can be tracked.
The trajectory has the form

x⃗n(t) =
[
vn(t) ψn(t) xn(t) yn(t) an(t) ωn(t) κn(t)

]T
where for each point in time t the nominal state xn(t) is completely defined. In
addition to the state variables used in the bicycle model, it also contains values
for the nominal trajectory curvature κn as well as the nominal acceleration an
and angular velocity ωn = vnκn as they are needed for subsequent calculations.
Using this nominal trajectory and the dynamics of the bicycle model, a model
of the error dynamics describing of the deviations between the nominal and
the actual trajectory can be derived. This model is linearized around ψe = 0,
ve = 0 while approximating cos(ve) = 1 and ve sin(ve) = 0. The linearized error
dynamics are then described by

ẋe =


v̇e
ψ̇e
ẋe
ẏe

 =


a− an
ω − ωn
ve + ωnye
vnψe − ωnxe


with ω = v

Lδ. When discretized with time constant T , the error dynamics are
defined by

xe,k+1 = Ak · xe,k +B ·
(
ak
ωk

)
− Ck (14.1)

where

Ak =


1 0 0 0
0 1 0 0
T 0 1 Tωn,k
0 Tvn,k −Tωn,k 1

 , Bk =


T 0
0 T
0 0
0 0

 , Ck =


Tan,k
Tωn,k

0
0


(14.2)

In order to obtain the optimal control signals which minimize the error be-
tween the actual and nominal state for N time steps, the following optimization
problem is defined:

min
u

N∑
k=0


ve,k
ψe,k
xe,k
ye,k


T

Qk


ve,k
ψe,k
xe,k
ye,k

 +

N−1∑
k=0

(
ak
ωk

)T
Rk

(
ak
ωk

)
+ wϵϵ (14.3)

Qk ∈ R4×4 is the weighing matrix for the error states and Rk ∈ R2×2 is the
weighting matrix for the inputs. They contain constants on their diagonal which

104

weigh the respective input and state variables. ϵ and its weighting factor wϵ
represent the cost in case of the vehicle exceeding lateral constraints. This is
described further in the constraints definition below. The weighting factors
can change each step, but in the simplest case they stay the same. Note that
the weights for the velocity and the position should not be chosen to be the
same, since the focus for the cost function needs to be set on either one. This
optimization problem needs to be subject to the following constraints:

Error Dynamics The optimization must be conducted along the dynamics
of the system, so per Equation 14.1 and Equation 14.2 the following condition
must be met:

∀k ∈ [0, N − 1] :


ve,k+1

ψe,k+1

xe,k+1

ye,k+1

 =


ve,k + T · (ak − an,k)
ψe,k + T · (ωk − ωn,k)

xe,k + T · (ve,k + ωn,k · ye,k)
ye,k + T · (vn,k · ψe,k − ωn,k · xe,k)

 (14.4)

Initial Error State The current state of the system needs to be given to the
MPC for it to be able to generate a suitable control signal to steer the error to
zero. The initial error state is therefore fixed as follows:

ve,0 = v − vn,0

ψe,0 = ψ − ψn,0

Xe,0 = (X −Xn,0) · cos(ψn,0) + (Y − Yn,0) · sin(ψn,0)

Ye,0 = (Y − Yn,0) · cos(ψn,0) + (X −Xn,0) · sin(ψn,0)

(14.5)

Maximum Steering Angle The steering angle of a car is limited. Since not
the steering angle itself, but the input ω = v

Lδ is used, the constraint on the
steering angle is

∀k ∈ [0, N − 1] :
v

L
δmin ≤ ω ≤ v

L
δmax (14.6)

Maximum Longitudinal Acceleration Because of restrictions on the ve-
hicle’s abilities, the acceleration must be constrained:

∀k ∈ [0, N − 1] : amin ≤ ak ≤ amax (14.7)

Maximum Lateral Acceleration For passenger convenience, the lateral ac-
celeration q = vω should not exceed a certain value. Because vω can not be
expressed in a linear MPC, it is assumed that v ≈ vn. Therefore the constraint
is formulated as

∀k ∈ [0, N − 1] : vnωk ≤ qmax (14.8)

.

105

Position Constraints The space on which the car may drive is limited by
several factors, i. e. the lane and road boundaries or obstacles. For now only
lateral position constraints based on y are considered, but in principle obstacles
could also be modeled by using constraints on x. It may happen that the vehicle
is just at the boundary of a forbidden state and may at some points in time
not be able to avoid that state. This would result in an infeasible problem
and an inability to provide control signals via MPC even though it would have
produced control signals that would drive the vehicle away from the forbidden
state. Therefore, instead of imposing hard constraints on the position, this
constraint is used to define a relation to a factor ϵ which gets higher the more
the constraint is violated. Together with a very high weighting factor wϵ, this
drives the const for violating the constraint so high that the MPC will try to
keep the vehicle out of the forbidden positions.

∀k ∈ [0, N] : ye,k,min − ϵ ≤ ye,k ≤ ye,k,max + ϵ (14.9)

14.2.2 Implementation

The MPC is implemented by building the optimization problem from a given
trajectory and given position constraints and solving it using a suitable solver
for quadratic problems. In this project group, the Gurobi solver is used as it
has been successfully used for similar problems previously [44], [9]. In contrast
to Matlab, which also provides functions for solving optimization problems [55],
Gurobi can be used via a Python interface [28], which makes it possible to
quickly integrate it into the existing architecture.

Usage Driving functions need to provide a trajectory and position constraints
in a standardized format to the component building the optimization. The ar-
chitecture is depicted in Figure 14.5. It shows how a driving function can obtain
optimal control signals through a standardized interface by providing a trajec-
tory and constraints. From these, a so-called Problem instance is constructed
in which these informations are modeled as a quadratic problem. The Problem
instance communicates with the Gurobi solver to generate a series of optimal
control signals, the first of which is handed back to the driving function.

In order to speed up the development of new driving functions, the MPCProb-
lem class has been implemented in a way that enables quick definition of tra-
jectories and constraints and obtaining optimal control signals which drive the
car according to these specifications.

An example of a driving function that uses the MPC to obtain control signals
is described in short in the following, using natural language. The driving func-
tion could be implemented like this quite easily in TurtleCar, since TurtleCar
exposes several software components that are of help. Similar driving functions
based on the MPC can be found in TurtleCar.

First, the time constant is set: T = 0.25. Additionally, constraints are
created. The acceleration should be between 0.0 and 0.2 m/s2. TurtleCar exposes
a simple software interface for creating constraints.

Now, a trajectory comprised of ten points, discretized by T , can be calcu-
lated. The ten points are defined by individual states, which contain the current
velocity at the state and some constraints, in this case, the acceleration con-

106

Vehicle Model

Driving Function Controller

Problem

Gurobi

Sensor Information Control Action

Trajectory Constraints

Quadratic Problem Solution

Control Action

Figure 14.5: The architecture for intergrating MPC in TurtleCar by providing
a problem builder as interface between driving function and optimizer.

straint mentioned above. This example trajectory spans 2.5 s in total, because
of T .

Now that the trajectory is defined and constraints are given, a problem
instance for the MPC can be created. It exposes control signals, which can be
used to alter the user input model values of TurtleCar, resulting in essentially
applying them to the current driving scenario.

Combined, this driving function implements a cruise control which keeps the
car at a speed of 36 m/s. The acceleration is constrained to a maximum of 2 m/s2.
For this, the list of states is defined from which a trajectory is generated.

Generating Trajectories In order to be able to easily create trajectories,
methods to generate full trajectories from limited information are implemented
as part of the MPC toolset in TurtleCar. A trajectory can be generated from
a list of states where each state contains one of the following combinations of
state information:

• x and y

107

• x, y and v

• x, y, v and a

• v and ψ

These methods use the given state information to estimate the remaining
state information. The given state information may be inconsistent in the sense
that its reference states do not work together. E. g. , the difference in position
between two states over the timestep may not be consistent with the velocity
in these states. This is permitted, as the MPC does not need a fully consistent
trajectory in order to minimize the error.

To convert the list of states to a trajectory, it is required to define a constant
time T between the states. In order to follow a trajectory without needing to
re-calculate it from the current state of the bot, it is necessary to find the
trajectory index that represents the next state depending on the current state
of the car. The trajectory is implemented in such a way that, when iterating
over it, it starts the iteration at the state following the current state of the
vehicle. For this, the two states in the trajectory with the least distance to the
current car state in terms of x and y are found and the state with the higher
index is selected as the next state.

It may be necessary to re-plan the trajectory, e. g. , because the situation the
car is in changed or to compensate sensor inaccuracies building up over time.
To be able to achieve this, states can be labeled with integers. These labels
can be used to identify sections of a trajectory. The sections can be labeled
arbitrarily by the planner, but usually they should be labeled in ascending
order as this enables comparing whether the current label is higher or lower
than other sections. From this comparison, the planner can determine if it still
has to plan that section or can discard it. A trajectory can tell how many steps
are left when counting from the current vehicle state until the label of the state
changes. When given the old trajectory with labeled states and the current
state of the vehicle, a trajectory planner can utilize this to determine how many
steps it has left to plan in the current trajectory section. An application of this
is shown in Section 16.4.

Defining Constraints Each state can be assigned constraints. In the ex-
ample above, all states are assigned the same constraint. The trajectory is
used together with constraints for the initial inputs to build an instance of
MPCProblem, from which the next control signals are obtained. Internally, the
optimization problem is solved using Gurobi for the next N time steps and the
first control signals are returned.

Additionally to the constraint on acceleration shown above, the Y position
can be constrained too. This way a whole lane can be constrained, meaning the
vehicle is not allowed to drive there. This applies even if the trajectory leads
through the forbidden lane.

Given the trajectory the required deviation from the trajectory will be cal-
culated to evade the forbidden lane. Per default, the calculation is implemented
in a way, that makes sure, the vehicle always stays on the road. In other words,
every area outside the street counts as forbidden.

Such a way of constraining lanes can be used for obstacle avoidance. If an
obstacle is positioned on a lane, this lane can be considered forbidden and the

108

(a) Obstacle evasion using forbidden
lanes

(b) Calculation of deviation from trajec-
tory for obstacle evasion

Figure 14.6: Obstacle evasion by defining forbidden lanes

vehicle would evade it. This is depicted in Figure 14.6a. The planned trajectory
goes through a forbidden area, where an obstacle is situated, but by adding this
lane to the constraints the vehicle will not drive through it. Instead it will try
to adhere to the trajectory as closely as possible while still not entering the
forbidden area and also obeying the other constraints.

To achieve this behavior the allowed deviation from the trajectory in lateral
direction is calculated. To do this, for each trajectory’s state a line orthogonal to
the heading is created as exemplarily seen in Figure 14.6b. Next, the intersection
in both directions to a forbidden area is calculated to compute the relevant
distances ye,k,min and ye,k,max from Equation 14.9. Additionally, the width of
the vehicle is incorporated into this calculation by removing half of the vehicle’s
width from the allowed deviation on either side.

In the example, the allowed deviation from the trajectory ranges from a
negative number to a positive one. The vehicle can drive into either direction
while staying in the specified range. If, however, the vehicle was already in a
forbidden area, the algebraic sign before the two distances are the same and
indicate in which direction the vehicle evades to. A negative sign indicates an
evasion to the left, a positive sign an evasion to the right.

The described approach for obstacle avoidance works conceptually. How-
ever, despite the right calculation of the allowed deviation, ϵ does not increase
which it should when the constraint is violated. The vehicle drives into the
forbidden lane anyway, not changing its course specified by the constraint. This
was tested in different scenarios in the simulation. Since the driving function
of evading obstacles can also be implemented without forbidden lanes and the
project reaches its end, this issue is not resolved and another way of implemen-
tation was chosen as described in Chapter 16. To revisit this in the future, the
described implementation is available but currently inactive.

109

110

Chapter 15

Situational Awareness

Especially the autonomous driving functions require interpreting the data col-
lected within the vehicle’s model in order to gain an understanding of the sit-
uation. As this may be very context-specific and require complex processing
steps, this interpretation is outsourced into task-specific components called In-
terpreters. They are mainly used by autonomous supervisors to decide which
driving functions should be activated depending on the situation, as described
in Subsection 14.1.2. They are executed each time the supervisor is called be-
fore it makes its decision, so that the actions performed by the supervisor are
always based on the latest interpretation of the situation. Some of these inter-
preters share logic with driving functions that are closely related, and therefore
were integrated together with them in one module. This chapter describes the
interpreters that are not directly integrated with other driving functions. The
remaining interpreters are described together with their driving functions in
Chapter 16.

15.1 Emergency Detector

This detector is used as a safeguard to prevent or at least mitigate crashes in
the case that other driving functions have driven the vehicle in a state that is
unsafe. It uses the raw lidar information of the model and checks if the minimum
of the lidar rays facing in the direction set by the steering wheel measured a
distance de < max(dmin, v/2) where dmin is a velocity-independent minimum
safety distance and v is the current speed of the vehicle in km/h. If that condition
is met, the emergency detector returns the EMERGENCY interpretation to the
caller. It was experimentally determined that it is sufficient to use the nearest
3 lidar rays in steering direction as a basis, as using a wider angle would lead to
falsely interpreting situations as emergencies. Otherwise, it returns an empty
set of interpretations.

15.2 Lane Change Safety

During a lane change, it is possible for obstacles to disrupt the vehicle’s plans.
Therefore, in this subsection, the strategy and implementation for avoiding ob-
stacles during a lane change will be described. First, a strategy is defined which

111

formalizes rules on how to avoid obstacles during lane changes. Second, the
strategy is implemented as an Interpreter usable in the architecture defined in
Chapter 14.

The idea is that the vehicle must not violate safety distances of other cars
or its own during a lane change. The distances to obstacles from the position of
the vehicle during the lane change are calculated, and compared to the obtained
safety distances. If a safety distance is violated, the lane change will be blocked.

The car should not collide with an obstacle before the lane change, during or
after it. It does not matter whether the obstacle is static or moving, a collision
should be avoided.

One could argue that this is the case with mostly all vehicle operations -
an obstacle should never be collided with. However, this general case changes
dramatically when the driver signals a lane change. Now, several more consid-
erations have to be made. It has to be determined if the vehicle would collide
with a vehicle up front after the lane change or if there are vehicles behind
that are significantly faster and would have no time to slow down appropriately.
See Figure 15.1 for an overview of the problem.

15.2.1 Strategy

Lee et al.define strategies for avoiding collisions during lane changes, formalize
the problem and implement a supervisor for the LCA. Fortunately, the Turtle-
Car software already provides a supervisor which can be used to prevent a lane
change if it is deemed unsafe. This decision is implemented as an Interpreter
module (Lane Change Assistant Interpreter (LCAI)). Based on Lee et al.,
an algorithmic strategy is designed which takes safety distances and current
obstacle distances into account [47]. The strategy for solving the problem is
formulated for TurtleCar in the following:

During a lane change, obstacles must be avoided. If one of the following
conditions is met, the lane change maneuver must be blocked.

1. There exists an obstacle on the lane to change to, it is further behind the
ego vehicle on its lane, and the obstacles relative speed to the ego vehicle
is significant and positive. The relative speed of the obstacle is significant
if it is bigger than 30 km/h. This value has been defined experimentally
(see Figure 15.2).

2. There exists an obstacle on the lane to change to, it is further behind the
ego vehicle on its lane, and the ego vehicle would violate the obstacles
safety distance to the front or its own safety distance but to the back (see
Figure 15.3).

3. There exists an obstacle on the lane to change to, it is in front of the
ego vehicle on its lane, and the ego vehicle would violate its own safety
distance to the front (see Figure 15.4).

The first rule exists to not slow down other obstacles immensely. When the
vehicle does not violate safety distances, it could still mean that the obstacle
would have to slow down immensely (i. e. , braking) in order to resolve the
situation. This should be avoided, since a real driver also would not change
onto a lane where a very fast obstacle relative to his own speed is approaching.

112

Figure 15.1: The general case of the problem

The second rule makes sure that obstacles behind the vehicle stay outside the
safety distance. Both safety distances are applied, because the vehicle’s speed
is most likely to be more accurate than those of the obstacles. The third rule
makes sure the vehicle keeps the safety distance to the front after changing the
lane. Implicitly, these rules also make sure that the vehicle does not collide
with obstacles directly beside him during the lane change, as their distance to
the vehicle will always be smaller than a given safety distance based on vehicle
speed. A situation where none of these conditions is met and the lane change

113

is therefore allowed is shown in Figure 15.5.

Figure 15.2: Fast approaching obstacle Figure 15.3: Obstacle behind

Figure 15.4: Obstacle in front Figure 15.5: Allowed Lane Change

15.2.2 Implementation of the Obstacle Avoidance Strat-
egy

In order to implement the strategy, the correct distances and safety measures
have to be calculated in each update step and compared to the rules defined

114

above. The supervisor distributes the update steps, so that the LCAI only
has to implement one base method which is called periodically by the supervi-
sor. See Section 14.2 for more details on the supervisor, driving functions and
controllers.

The calculation in each update step is using vector calculations and the path
planner from Chapter 11. The following information about obstacles is present
in the TurtleCar model, see Chapter 10 for details.

1. Position

2. Heading

3. Velocity

4. Relative velocity to ego vehicle

The following steps are taken to do the calculations.

1. Calculating the projected position
The projected position, called p⃗ostb,proj , is the position of the vehicle
after having performed the lane change. It is calculated by using the
median path planner also used in other driving functions, see Chapter 11
for details. The planner is instructed to plan a path in the middle of the
lane to change to, starting from the closest point to the vehicle’s current
position. p⃗ostb,proj is extracted by using the first point of the planned
path. This will be the closest middle point on the target lane.

2. Identifying all relevant obstacles
The list of all obstacles is filtered to contain only obstacles that are lo-
cated in the lane to change to. Obstacles that are not located in the
lane to change to will not impose a problem for the vehicle. This is un-
der the assumption that they don’t interfere with the lane change process
drastically. Rogue actors are not considered.

3. Identifying the closest obstacle behind and the closest obstacle
up front
From the list of relevant obstacles two specific obstacles are retrieved: the
closest up front, and the closest to the back. This is done in a two-step
process:

(a) Separate the list into two lists, one containing all obstacles behind
the vehicle and one containing all obstacles in front of it. This is
done by calculating the dot product of the unit vector based on the
vehicle’s heading and the vector from the vehicle to the obstacle. If
the dot product of these vectors is positive, both vectors point in
the same direction, which means the vehicle is looking towards the
obstacle - i. e. , the obstacle is in front of the obstacle. If it is negative,
the obstacle is behind the vehicle. Zero is interpreted as the obstacle
being in front of the vehicle.

(b) These two lists are then filtered to find the obstacle with the least
distance to the vehicle’s position. This results in two obstacles: one
closest behind and one closest in front.

115

4. Calculating the distances to the obstacle up front and obstacle
behind
distancepos,proj,front is the distance of the obstacle up front to p⃗ostb,proj .

distancepos,proj,front = ||p⃗osobst − p⃗ostb,proj ||

distancepos,proj,back is calculated like this as well.

5. Calculating safety distances
safetytb and safetyobst are calculated based on ||v⃗elobst|| and ||v⃗elobst||,
respectively. The safety distances are the velocities converted to km/h and
then halved.

safetytb = ||v⃗elobst|| · 3.6/2

6. Deciding whether to block the lane change
After having now calculated all relevant parts, the strategy defined in Sub-
section 15.2.1 is followed. If a violation according to the strategy occurs,
the lane change is deemed unsafe. This information is returned to the
supervisor.

15.2.3 Testing

The scenarios described in the following define a way to test the functionality
of the lane change interpreter. They are the basis for extensive parameterized
unit tests included in the TurtleCar source code. Each scenario includes a
description, a graphical overview and steps to replicate it.

Scenario 1: No obstacle

Description: This scenario is the situation where the LCAI is active, but no
relevant obstacle is on the target lane. This aims to test whether the LCAI
performs invalid blocking actions. It is shown in Figure 15.6.
How to replicate this scenario:

1. Initialize the simulation environment on a straight road with one vehicle.

2. Accelerate the vehicle.

3. Initiate a lane change to a new lane.

4. Monitor the LCA state. The action should be allowed and the lane change
completed.

Scenario 2: Obstacle behind and inside safety distance

Description: This scenario is the situation where the LCAI is active, and there
is an obstacle inside the vehicle’s safety distance to the back on the target lane.
It is shown in Figure 15.7. This aims to test whether the LCAI performs valid
blocking actions regarding back obstacles.
How to replicate this scenario:

116

Figure 15.6: Allowed Lane Change

Figure 15.7: Approaching Vehicle within safety distance

1. Initialize the simulation environment on a straight road with two vehicles
side by side.

2. Move the vehicle on the target lane slightly to the back of the ego vehicle
that will perform the lane change.

117

3. Accelerate both vehicles to the same high speed in order to create a high
safety distance.

4. Initiate the lane change to the lane where the vehicle is behind.

5. Monitor the lane change of the ego vehicle. The action should be blocked.

Scenario 3: Obstacle in front and inside safety distance

Description: In this scenario, which can be seen in Figure 15.8, there is an
obstacle inside the vehicle’s safety distance to the front on the target lane.
This aims to test whether the lane change is prevented in response to frontal
obstacles.

Figure 15.8: Vehicle within safety distance in new lane

How to replicate this scenario:

1. Initialize the simulation environment on a straight road with two vehicles
side by side.

2. Move the vehicle on the target lane slightly to the front of the ego vehicle
that will perform the lane change.

3. Accelerate both vehicles to the same high speed in order to create a high
safety distance.

4. Initiate the lane change to the lane where the vehicle is in front.

5. Monitor the lane change state of the ego vehicle that performs the lane
change. The action should be blocked.

118

Scenario 4: Obstacles to the back and in front, both inside safety
distances

Description: This scenario is the situation where the LCAI is active, and
there are two obstacles inside the safety distance: one to the back and one to
the front. It is shown in Figure 15.9. This aims to test whether the LCAI
performs correctly when faced with multiple obstacles.

Figure 15.9: Vehicle next to ego within safety distance

How to replicate this scenario:

1. Initialize the simulation environment on a straight road with three vehicles
side by side.

2. Move two vehicles onto the target lane, one slightly to the front of the ego
vehicle that will perform the lane change and one slightly to the back.

3. Accelerate all vehicles to the same high speed in order to create a high
safety distance.

4. Initiate the lane change to the lane where the two vehicles are driving.

5. Monitor the lane change state of the ego vehicle that performs the lane
change. The action should be blocked.

Scenario 5: Obstacle to the back but with high relative speed

Description: This scenario is the situation where the LCAI is active and there
is an obstacle outside the safety distance, but with a high relative speed, i. e. ,
it is approaching fast. This aims to test whether the LCAI blocks the lane
change if there is a fast approaching obstacle to the back on the target lane.
The scenario is shown in Figure 15.10.

119

Figure 15.10: Fast approaching vehicle not yet within safety distance

How to replicate this scenario:

1. Initialize the simulation environment on a straight road with two vehicles
side by side.

2. Move the vehicle on the target lane a great deal to the back of the ego
vehicle that will initiate the lane change. Make sure that the relevant range
for obstacle detection is not smaller than the distance created. Otherwise,
the obstacle will not be noticed at all.

3. Accelerate the back vehicle to a significantly higher speed than the ego
vehicle.

4. Without waiting for the behind vehicle to catch up, initiate the lane
change.

5. Monitor the lane change state of the ego vehicle that performs the lane
change. The action should be blocked, since the rear vehicle is fast ap-
proaching.

Scenario 6: Obstacle outside of safety distance

Description: This scenario is the situation where the LCAI is active and there
is an obstacle outside the safety distance. This aims to test whether the LCAI
recognizes correct safety distances and does not block the lane change. It is
shown in Figure 15.11.
How to replicate this scenario:

1. Initialize the simulation environment on a straight road with two vehicles
side by side.

120

Figure 15.11: Slower moving vehicle outside the safety distance

2. Move the vehicle on the target lane a great deal to the back of the ego
vehicle that will initiate the lane change.

3. Accelerate both vehicles to a high speed.

4. Initiate the lane change.

5. Monitor the lane change state of the vehicle that performs the lane change.
The action should not be blocked, since the rear vehicle is outside the
safety distance.

15.3 Obstacle Overtaking Safety and Road Rules
Adherence

In this section, the adherence to overtaking safety and road rules is described.
This is done similarly to the LCAI described in Section 15.2.

15.3.1 Introduction

The OTA also employs an Overtaking Assistant Interpreter (OTAI), just like
the LCA. The interpreter architecture is described in detail in Subsection 14.1.2.

As stated in Section 15.2, the ego vehicle should not collide with obstacles
during lane changes. This also applies to the lane changes performed using the
OTA. However, the OTAI performs checks for more conditions than the LCAI,
since the OTA operates in more complex situations than the LCA.

In addition to check for obstacles that might block the lane changing pro-
cesses, the OTAI also checks for the following conditions:

121

I. Is overtaking prohibited by currently applicable road sign rules?

II. Is the speed difference to the obstacle big enough to justify an overtaking
maneuver?

III. Would the ego vehicle be faster than the currently applicable speed limit
during overtaking?

Also, checking the target lane for obstacles is not only relevant when per-
forming the first OTA lane change, but also when reeving back onto the origin
lane. In opposition, the LCAI only had to check one maneuver at all times.

In difference to the LCA, the OTA should not do nothing after being blocked,
but remain behind the obstacle at a safe distance until the obstacle is overtake-
able. The OTAI then frees the OTA, thanks to the supervisor architecture
described in Subsection 14.1.2.

15.3.2 Implementation

For addressing lane changes, the OTAI simply uses the LCAI. The OTAI calls
the inspection method of the LCAI, and uses its result for further interpretation
of the situation. When the LCAI indicates that a lane change is not possible,
the OTAI will not perform further checks, but informs the supervisor that the
overtaking maneuver is not possible. The supervisor then blocks the OTA.
See Section 15.2 for more details on the LCAI, and Subsection 14.1.2 for more
details on the supervisor and interpreter architecture.

For checking whether overtaking is allowed or not, the OTAI uses the ob-
stacle detection described in Chapter 10. The obstacle detection module recog-
nizes road signs based on their ArUco ID, and adds certain rules into TurtleCars
model if necessary. This concludes, that the OTAI can simply rely on the data
in the model for checking road rules. If the OTAI finds a road sign rule which
prohibits overtaking, it communicates this to the OTA, which is then blocked.

For checking if the relative speed difference of the ego vehicle to the obstacle
is big enough to justify an overtaking maneuver, the information gathered by
the obstacle detection module is used. All obstacles in the model have their
relative speed and their absolute speed calculated and set. Therefore, the OTAI
can simply access the relative speed and define a threshold, above which an OTA
maneuver is possible.

A new requirement is, that the ego vehicle should not exceed the currently
applied speed limit during the overtaking process. Otherwise, an overtaking
maneuver could result in a very slow overtake, which is to be avoided. The
OTA exposes the speed with which it would perform the overtake with. This
speed is compared with the currently applicable speed limit. If the overtaking
speed would exceed the speed limit, it is not performed until after the speed
limit is lifted.

If any of the above conditions are violated, the OTAI indicates to the OTA
that it can’t be used, and the supervisor disables the OTA as long as the OTAI
still blocks the OTA.

15.3.3 Scenarios

In this subsection, the scenarios that could occur with using the OTA are de-
scribed, and whether these would lead to the OTAI blocking the OTA or not.

122

Figure 15.12 contains a scenario where the ego vehicle is blocked during
usage of the OTA, because there is an obstacle on the lane which is used during
overtaking. In Figure 15.13 however, there exists no such obstacle and the ego
bot is therefore free to overtake using the OTA.

Figure 15.12: OTA blocked because
of obstacles in overtaking lane

Figure 15.13: OTA free because of
no obstacles in overtaking lane

In Figure 15.14, the ego vehicle is blocked because overtaking is prohibited
in the ego vehicles current section. This road rule is lifted in Figure 15.15, so
that the ego vehicle is free to overtake the obstacle with the OTA.

Figure 15.14: OTA blocked because
of prohibited overtaking in section

Figure 15.15: OTA free because of
overtaking prohibition lifted again

The next scenario depicts a situation where the OTA is blocked because of
having the same speed with the obstacle to overtake. In Figure 15.16, the speed
difference for overtaking is not big enough in order to justify an overtaking
maneuver. However, this is not the case in Figure 15.17: the speed difference is
big enough and the ego vehicle is free to overtake.

Last, in the scenario depicted in Figure 15.18, the ego vehicles overtaking
maneuver is blocked because the vehicle would reach a speed during the maneu-
ver which is higher than the allowed maximum speed at this section. However,
in Figure 15.19, the ego vehicle stays well under the maximum speed limit of
130 km/h, so that the overtaking can be performed. In these scenarios, a delta
of 10 km/h between current speed and overtaking speed has been assumed.

123

Figure 15.16: OTA blocked because
of same speed with obstacle

Figure 15.17: OTA free because of
significant higher speed than obsta-
cle

Figure 15.18: OTA blocked because
of max speed limit applied during
overtaking

Figure 15.19: OTA free because of
max speed not reached during over-
taking

124

Chapter 16

Driving Functions

In this section, the driving functions implemented by the project group are
documented. These are used within the architecture described in Chapter 14.
For each driving function, the definition of the requirements, the controllers used
to implement the driving function, and the validation are described. Some of
these driving functions can’t be active at the same time, as the controllers may
provide conflicting control inputs. These conflicts are covered in Section 16.8

16.1 Manual Driving

The manual driving controller controls the vehicle conforming solely to the
driver’s inputs. Since the focus of the project group is the development of
autonomous driving function and not a realistic mapping of controls of a real
vehicle, the user input is simplified. It consists of two inputs: A target velocity
and a steering wheel angle. The manual driving controller gives these inputs
directly to the Action interface. This means that the steering angle is set to
be exactly the steering wheel angle given by the driver and the target velocity
of the vehicle is set to be exactly the target velocity given by the driver. These
values are then used by the Transposer to drive the vehicle accordingly. It
is necessary to mention that the Transposer acts as a very aggressive cruise
control with maximum acceleration and deceleration. In order to enable more
realistic and smoother driving, the input of the driver or the vehicle model needs
to be changed.

16.2 Lane Keeping Assistant

The LKA driving function should assure that the vehicle keeps in its lane.
In Figure 16.1 the ego vehicle is located on the middle lane and driving. In a
scenario with the LKA activated the vehicle should keep the same distance to
the lane markings on each side - so it should drive centered in the lane it starts
in.

The requirements of the LKA are based on the ISO standard 11270 [31], but
do not yet cover all aspects. These requirements are subject to rework.

125

Figure 16.1: LKA scenario

16.2.1 General Requirements

• The LKA must be able to be switched on or off

– The LKA can be toggled by user input

– The LKA can be switched on by startup flag

• The robot must identify the lane its on and its center

• The LKA must be disabled when the lane change disabling condition ac-
cording to the ALKS regulation is fulfilled

• The LKA enabled vehicle should never cross lane borders

• The robot should follow the lane’s center

• The controller should be based on model prediction

16.2.2 Functional Requirements

Requirement LKA.1

GIVEN

• The vehicle is running

WHEN

• The input to enable the LKA is given

THEN

• The LKA is enabled

Requirement LKA.2

GIVEN

• The robot starts inside of lane boundaries

126

• The initial velocity is 0, the initial acceleration is 0, the initial steering
angle is 0

• The robot heading fulfills the following criteria:

– If the robot is left of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2° toward the right lane boundary.

– If the robot is right of the center of the lane, it faces in the direction it
will drive, oriented within 0 and 40.2° toward the left lane boundary.

WHEN

• A target velocity greater than 0 is given by a human driver

• A steering wheel angle smaller than a threshold ω is given by the driver

• The LKA is enabled by the driver

THEN

• The LKA engages

• The robot identifies the lane it is on

• The robot accelerates to the speed defined by the human driver and main-
tains this speed

• The robot follows the center of the lane

• The robot never crosses lane borders

• The steering angle is always within the vehicle’s specifications

Requirement LKA.3

GIVEN

• The robot is driving with arbitrary speed, arbitrary acceleration

• The LKA is active

• The steering angle is arbitrary within the vehicle’s specification

• Initially there is no steering input from the user

WHEN

• A steering wheel angle greater than a threshold ω is given by the driver

THEN

• The LKA disengages

• The steering angle of the vehicle is the same as the steering wheel angle
given by the driver

127

Requirement LKA.4

GIVEN

• The robot is driving with arbitrary speed, arbitrary acceleration

• The LKA is enabled

• The steering wheel angle given by the user is greater than a threshold ω

• The LKA is disengaged

WHEN

• A steering wheel angle smaller or equal to a threshold ω is given by the
driver

THEN

• The LKA engages

Requirement LKA.5

GIVEN

• The LKA is enabled

WHEN

• The user input to disable the LKA is given

THEN

• The LKA is disabled

16.2.3 Non-Functional Requirements

LKA.A

The controller for the LKA is based on model prediction.

16.2.4 Additional Information

Overruling the LKA How an LKA can be overruled by the user differs
depending on car manufacturer, model and available sensors and actuators in
the car. In the manual for the EV6, KIA Motors describe that turning the
steering wheel over a certain degree deactivates the LKA [40]. The deactivation
criteria of the LKA systems developed by Bosch depend on the availability
of power steering: When available, the LKA actively turns the steering wheel
and can therefore be overruled by the driver using enough force. [72]). Since the
TurtleCar system does not contain force feedback inputs and adding support for
these is out of scope for this project group, this is not possible to implement. In
order to demonstrate temporary overruling for a lane change, the steering wheel
angle threshold ω is defined. It was determined experimentally that setting ω
to 1.7° yields suitable results.

128

Determining the suitable initial conditions The maximum possible ori-
entation is based on the most narrow curve that a car with the wheel base length
and the maximum steering angle of a VW Golf. When in the center of the lane,
the greatest angle it can recover from is 40.2°. This can be computed as follows:

• a: maximum steering angle (40°for VW Golf)

• w: wheelbase length (2.6365 m for VW Golf)

• r: radius of turning circle

• r = w
tan(a)

Since the outer set of wheels on the car is of interest when determining the
size of the circle driven by the vehicle, half of the golf’s width is added to the
to the radius:

rgolf = r + 0.9

The maximum recovery angle based on that radius was determined graph-
ically as shown in Figure 16.2. When placing a circle with radius of rgolf so
that it touches the lane boundary, it represents the path that a vehicle would
take in the most extreme, still manageable case. The tangent of the circle at
the intersection of the center of the lane shows the orientation of the car in
this extreme case when placed at the lane center. When at the left of the lane
center, the car is therefore able to recover from orientations of 53.6° to the right
or lower. The same goes for the situation that the car is right of the center
and faces left. With a safety margin of 25%, this results in a maximum allowed
orientation of 40.2°.

Figure 16.2: Graphical representation of the maximum heading pointing out of
the lane that a car can recover from

16.2.5 Implementation

Two approaches were used to implement the LKA. The first approach is based
on a PID controller, which is easier to implement but becomes unstable in some
conditions. It was subsequently replaced by a controller based on MPC. Both
approaches are presented in the following.

129

Figure 16.3: A graphical representation of the state variables used for the con-
troller of the LKA. Y and θ are always relative to the next point provided by
the path planner.

PID-based Lane Keeping Assistant

For the implementation, a MPC based on the bicycle model is used. Since the
bicycle model is a nonlinear differential equation, it is linearized in order to
obtain a linear controller.

Controller Model Since the LKA does not control the acceleration but only
the steering angle, the velocity of the vehicle can be regarded as a parameter of
the system. Therefore the bicycle model defined in Section 5.1 can be reduced
to the simplified version

ẋ1 = Ẏ = v · sin(x2)

ẋ2 = θ̇ =
v

l
· tan(u2)

where X is the position in the linear direction of the car, Y the lateral
position, and θ the heading. These are all relative to the next point that the
path planner provides. A depiction of the meaning of Y and θ can be seen
in Figure 16.3.

This allows for a simpler linearization. The operating point to linearize
around is x = 0 and u = 0. This represents the state where the vehicle is
exactly on the line that has to be followed, and assumes that the controller only
needs to make small corrections.

130

With that the system is linearized:

ẋ(t) = f(x, u) = Ax+Bu ≈ f(0, 0) +
∂f

∂x

∣∣∣u=0
x=0

· x+
∂f

∂u

∣∣∣u=0
x=0

· u

=

[
0
0

]
+

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2s

] ∣∣∣∣∣u=0
x=0

· x+

[
∂f1
∂u1
∂f2
∂u1

] ∣∣∣∣∣u=0
x=0

· u

=

[
0 v cos(x2)
0 0

] ∣∣∣∣∣
x=0

· x+

[
0
v

l·cos2(u)

] ∣∣∣∣∣
u=0

· u

=

[
0 v
0 0

]
· x+

[
0
v
l

]
· u

The state feedback control law u = −[k1 k2] · x is used to design the controller.
This results in the closed-loop function:

fcl =

[
0 v
0 0

]
· x+

[
0
v
l

]
· (−[k1 k2] · x) =

[
0 v
0 −v

l ∗ k2

]
·
[
x1
x2

]
From the closed loop function it can be seen that k1 can remain undeter-

mined, as the lateral position has no direct influence on the control input. Now
the operating domain for the velocity the LKA should be stable in has to be
chosen. For this v ∈ (0, 34] m/s was chosen, which is (0, 120] km/h .

Using Matlab the characteristic polynomial for which all eigenvalues have
real parts strictly less than 2 was determined. With the coefficients, it is possible
to solve for values of k2 which hold the closed loop system in a stable domain.
For this, the parameter space was sampled with a step size of 0.5. Since the
system is uncontrollable for v = 0, sampling started at 0.5. This resulted in
values for k2 ∈ [0.05, 1.4].

This enabled building a stable controller for the LKA. From the domain of
stable values for k2, choosing k2 = l

v has been determined experimentally to
yield the best results for any speed v.

Model Predictive Control-Based Lane Keeping Assistant

The controller based on MPC is designed to follow a trajectory which leads
along the center of the current lane. The trajectory is created in the same way
as described in Section 16.2.5. It is updated every second to adhere changes in
the lane detection.

The MPC-based controller to follow this trajectory is initialized with a step
size of 1 second. The following weights for the error in each state dimension
were chosen:

Qv = 1.0

Qψ = 1.0

QX = 0.0

QY = 1.0

This forces the MPC to adhere to the heading and lateral position Y and
enables it to neglect the longitudinal position X which is less of interest as

131

staying in the lane only concerns the lateral movement. THe input error weights
are evenly distributed:

Ra = 1.0

Rω = 1.0

From the result of the MPC, only the steering angle is forwarded to the
vehicle input. Since the MPC is designed to choose both optimal acceleration
and steering, it is necessary to constrain the acceleration to the value that the
driver will probably choose, as it would lead to wrong results if the calculations
within the MPC are based on different acceleration values. It is assumed that the
driver will not perform any large speed changes and therefore the acceleration
given by them is 0.0. Therefore, the MPC is constrained to have a minimum
and maximum acceleration of 0.0 in every state.

16.2.6 Tests

Before the requirements are tested, a suitable environment is created. A scenario
and the required number of bots are loaded for this purpose. Furthermore, areas,
test phases and a timer are defined.

Turning the LKA on and off is one of the general requirements. If the LKA
is activated, the robot should identify the line its centered on and follow the
lane’s center. Also the LKA enabled vehicle should never cross lane borders.
In the designed test (auto deactivation) the LKA is enabled. After five seconds
the LKA is deactivated and the steering angle is set to a greater value than the
LKA DEACTIVATION THRESHOLD. In this case the roboter cannot keep its
lane, therefore the LKA is deactivated and the test is succesful.

Requirement LKA.1
The condition for a successful test (lka drive centered) is staying inside the
designated center line for 10 seconds. The test fails, when the test condition
isn’t meet after 30 seconds.

Requirement LKA.2
Straight Pull: Success is determined if the vehicle is able to pull straight in time,
demonstrating the LKA’s ability to maintain lane centering after reactivation.

The test (lka curved road) is considered successful if the vehicle maintains its
lane for more than 30 seconds. This duration tests LKA’s sustained lane-keeping
ability, addressing aspects of LKA.2, specifically maintaining lane position over
time. Failure is recorded if the vehicle veers into either the left or right lane.
These requirements ensure that the LKA functionality of a vehicle can effectively
maintain the vehicle’s position within its lane under various conditions.

Requirement LKA.3

The Requirement LKA.3 involves deactivating the LKA when the steering
angle exceeds a certain threshold. Success Condition for the Test: The test is
deemed successful if LKA is able to maintain lane integrity for a specified du-
ration after reactivation. This indicates that the system can reliably re-engage

132

and continue to provide lane-keeping assistance even after it has been auto-
matically deactivated under certain conditions. Failure Condition for the Test:
The test is considered a failure if LKA fails to maintain lane integrity following
its reactivation. This suggests that the system is not consistently reliable in
re-establishing its lane-keeping capabilities after being deactivated due to ex-
cessive steering angle or other factors. This criterion is crucial for evaluating
the robustness and reliability of the LKA system, especially in scenarios where
temporary deactivation is necessary but should not compromise the vehicle’s
ability to return to and maintain its lane positioning.

Requirement LKA.4
LKA.4 concerns reactivating the LKA once the vehicle is correctly aligned within
its lane (test named lka reactivation). This criterion assesses the system’s ability
to re-engage and effectively support lane keeping after manual alignment by the
driver or after any condition that required deactivation. A test is considered suc-
cessful if, after reactivation, LKA maintains lane integrity for a predetermined
amount of time. This outcome demonstrates the system’s capacity to seamlessly
reintegrate and uphold its lane-keeping functions after being temporarily disen-
gaged. The test is deemed a failure if LKA is unable to maintain lane integrity
following its reactivation. This indicates a deficiency in the system’s capability
to reliably resume its lane-keeping support after a period of deactivation, which
is critical for ensuring continuous safety and assistance to the driver. This
specification is vital for evaluating the effectiveness and reliability of the LKA
system in scenarios where it has been deactivated and subsequently reactivated,
ensuring that the system can still provide consistent support for maintaining
the vehicle within its lane. In the test (pull straight) the reactivation of LKA
after manual steering is being tested.

Requirement LKA.5
To manually test the deactivation of the LKA, first it is required to deactivate
LKA and then adjust the steering to be less than the LKA Deviation Threshold.
This procedure aims to simulate conditions under which LKA might be inten-
tionally turned off or adjusted due to driver input or specific driving scenarios
(test: lka manual activation) If the robot is partially within the left lane, it is
an indication that LKA has been successfully disabled (LKA.5). This outcome
confirms the system’s responsiveness to manual deactivation commands and its
ability to correctly interpret and react to steering adjustments that fall below
the set deviation threshold.

This test is crucial for assessing the LKA system’s flexibility and its capacity
to be manually overridden or adjusted by the driver, ensuring that control can
be seamlessly transferred without compromising safety or driving efficiency.

LKA System Validation Summary
The testing and validation of the LKA system confirmed its successful alignment
with all predefined requirements(Requirements ACC.1 through ACC.5), effec-
tively ensuring the system’s ability to keep the vehicle centered within its lane,
respond to manual driver inputs for activation and deactivation, and adaptively
maintain lane integrity under various driving conditions.

133

16.3 Adaptive Cruise Control

The ACC function should assure that a vehicle keeps a safety margin to a vehicle
in front of it. In Figure 16.4 the ego vehicle is located on the middle lane and
driving. In front of the ego vehicle is another vehicle, driving at least as fast as
the ego vehicle. The distance between both vehicles is at least the safety margin
distance at all times.

Figure 16.4: ACC scenario

16.3.1 General Requirements

• The vehicle must be able to activate/deactivate ACC depending on the
drivers wishes

– The ACC must be deactivated if the driver takes manual control

• The vehicle must keep at least a minimum safe distance including a suit-
able error margin

– The vehicle should keep the same speed as the front vehicle

– The vehicle must be able to reduce its speed to keep the minimum
safe distance

– The vehicle should be able to increase its speed to keep the distance
to front vehicle

• The driver can issue a command to drive at a certain speed overriding the
ACC

• The ACC must be disabled if the driver issues a brake command

• The ACC controller should be build using model prediction

Definition: Minimum Safe Distance To be defined according to relevant
regulations: Minimum safe distance which a following vehicle needs to maintain
in order to be able to decelerate if the leading vehicle brakes (with bounds for
deceleration)

In the German traffic regulations, a rule of thumb to determine the distance
between two vehicles considered safe is described: The vehicle needs to keep a
distance of at least half of the current speed (kilometers per hour) in meters [14,
§2 Abs. 3a S. 2a].

134

16.3.2 Functional Requirements

Requirement ACC.1

GIVEN

• The ego vehicle is driving behind another vehicle. Both vehicles have arbi-
trary speed and the ego vehicle maintains at least minimum safe distance
to the leading vehicle.

WHEN

• The driver triggers the switch for the ACC

THEN

• The ACC is enabled

Requirement ACC.2

GIVEN

• The vehicle is driving behind another vehicle with arbitrary speed vi with
at least minimum safe distance including error margin

WHEN

• The ACC is enabled

THEN

• The ego vehicle drives at most with velocity vi

• The ego vehicle accelerates or brakes within the velocity bounds so that
it maintains at least a minimum safe distance including error margin to
the leading vehicle

Requirement ACC.3

GIVEN

• The ACC is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle brakes to velocity vb

THEN

• The ego vehicle drives at most with velocity vb

• The ego vehicle decelerates to velocity vb and maintains at least a mini-
mum safe distance without error margin at all times

135

Requirement ACC.4

GIVEN

• The ACC is enabled

• The leading vehicle is driving with velocity vi

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has a a distance to the leading vehicle that is smaller than the minimum
safe distance including error margin

• The driver does not give a command to accelerate to a speed greater than
vi

WHEN

• No Action

THEN

• The ego vehicle drives at most with velocity vi

• The ego vehicle decelerates to until it maintains at least a minimum safe
distance including error margin

Requirement ACC.5

GIVEN

• The ACC is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The other vehicle accelerates to velocity va

THEN

• The ego vehicle drives at most with the minimum vm of velocities vi and
va

• The ego vehicle accelerates to velocity vm and maintains at least a mini-
mum safe distance with error margin at all times

136

Requirement ACC.6

GIVEN

• The ACC is enabled

• The vehicle is driving behind another vehicle with arbitrary speed vi and
has at least minimum safe distance including error margin

WHEN

• The driver continuously issues a command to drive with velocity vt

THEN

• The ego vehicle accelerates to velocity vt without regard for the minimal
safe distance

Requirement ACC.7

GIVEN

• The ACC is enabled

WHEN

• The relevant user input is received

THEN

• The ACC is disabled

• The vehicle drives according to the driver’s commands only

Requirement ACC.8

GIVEN

• The ACC is enabled

WHEN

• The driver issues a braking command

THEN

• The ACC is disabled

• The vehicle drives according to the driver’s commands only

16.3.3 Non-Functional Requirements

ACC.A

The controller for the LKA is based on model prediction.

137

16.3.4 Implementation

For the implementation, the approach described by Zhenhai et al. is used [98].
The function of the ACC is based on a switching strategy between two modes:
In Cruise mode the vehicle simply keeps a given speed. In Follow mode the
vehicle maintains a constant distance to the preceding vehicle and matches its
speed if it is lower than the speed defined by the driver. The control law in
each mode defines the acceleration a. For the description of the controllers, the
following variables are used:

• v is the speed of the ego vehicle

• vd is the target speed for the ACC

• vp is the speed of the preceding vehicle

• ∆v = vp − v is the relative speed of the two vehicles

• ∆d = d − dmin(∆v) is the distance of the ego vehicle to the closest safe
point behind the preceding vehicle based on their relative speed

• afollow is the target acceleration calculated by the follow mode algorithm

• acruise is the target acceleration calculated by the cruise mode algorithm

• doffset is a parameter to define the offset between the zones where Follow
mode and Cruise mode are applied

The control laws in each mode are described in Table 16.2. The constants
kp, ki, kv and kd are selected so that the vehicle is able to achieve the desired
state quickly, but without creating too much jerk in its movements. The chosen
values are shown in Table 16.1.

Table 16.1: Chosen values for ACC constants.

Constant Value

kp 0.5
ki 0
kv 0.25
kd 1

Table 16.2: The control laws of the ACC.

Control Law

Cruise Mode acruise = kp(vd − v) + ki
∫

(vd − v)dt
Follow Mode afollow = kv∆v + kd∆d

Each time a control signal needs to be generated, the controller first checks
which mode should currently be applied. It then chooses the corresponding
control law. This switching strategy is taken from Zhenhai et al. and is
based on dividing the parameter space into zones in which the different control

138

Table 16.3: The zone-based switching strategy from Zhenhai et al. [98]

Distance Velocity Acceleration Resulting Control Mode

∆d ≤ 0 ∆v ≤ 0 - Follow Mode
∆d > 0 ∆v < 0 afollow ≤ acruise Follow Mode
∆d > 0 ∆v < 0 afollow > acruise Cruise Mode
∆d < doffset ∆v > 0 afollow ≤ acruise Follow Mode
∆d < doffset ∆v > 0 afollow > acruise Cruise Mode
∆d ≥ doffset ∆v ≥ 0 - Cruise Mode

laws apply [98]. This division is given by distance, velocity and acceleration.
This method ensures that switching between modes is conducted smoothly. In
favor of brevity, only the switching table is documented here without reasoning
about the parameter zones. It is shown in Table 16.3. The table describes the
conditions on distance, velocity and acceleration and defines the control mode
that should be applied in each case. A

”
-“ means that the respective parameter

does not factor in the decision in this case.

16.3.5 Tests

Requirement ACC.1 & Requirement ACC.2 & Requirement ACC.4
The test (acc active) assesses the ACC system under the conditions specified
in Requirement ACC.2 and ACC.1, focusing on its capacity to maintain safe
following distances and adjust speed in response to the lead vehicle’s behavior.

The test is considered successful if, upon ACC activation, the ego vehicle
adjusts its speed to not exceed that of the leading vehicle (velocity vi), and
actively manages its speed (either by accelerating or braking) to maintain a
minimum safe distance, inclusive of an error margin, from the vehicle ahead.
This demonstrates the ACC system’s effectiveness in adapting to varying speeds
of the leading vehicle while ensuring a consistent safety buffer is maintained.

The test is deemed a failure if the ego vehicle fails to adhere to the speed of
the leading vehicle (exceeds velocity vi) or does not maintain the minimum safe
distance, considering the error margin. Failures indicate deficiencies in the ACC
system’s responsiveness or its ability to calibrate speed and distance controls
accurately under specified conditions.

Another test scenario (acc self decelerate) also examines the ACC’s capabil-
ity to maintain a safe following distance when activated, closely aligning with
Requirement ACC.2 and ACC.1. Initially, the ACC is not active, simulating
normal driving conditions. After a brief period, the ACC is activated, and the
system’s ability to manage the vehicle’s speed to maintain or achieve a safe
distance from the vehicle ahead is tested.

Success is achieved if the ego vehicle adjusts its speed to maintain at least
the minimum safe distance from the leading vehicle, demonstrating the ACC’s
effectiveness in ensuring safety and compliance with the set distance parameters.

The test fails if the ego vehicle does not maintain the minimum safe dis-
tance within the test duration, indicating a potential issue in the ACC system’s
distance sensing or speed adjustment capabilities.

Both tests also share similarities with Requirement ACC.4. Requirement

139

ACC.4 specifically addresses how the ACC system responds when the vehicle is
initially too close to the vehicle ahead, requiring deceleration to establish a safe
following distance, without driver acceleration commands. In contrast, ACC.1
focuses on the activation of ACC, and ACC.2 outlines the system’s operation
to maintain or achieve a safe distance at all times.

Requirement ACC.3
The scenario (acc other decelerate) tests the ACC system’s response to a lead-
ing vehicle’s deceleration (Requirement ACC.3). The test initiates with both
vehicles moving and the ACC activated on the ego vehicle. The scenario pro-
gresses to simulate a deceleration of the lead vehicle, examining the ego vehicle’s
capability to adjust its speed accordingly to maintain a safe following distance.

The test is deemed successful if the ego vehicle decelerates to match the lead
vehicle’s reduced speed without breaching the minimum safe distance. This
outcome signifies the ACC system’s effective speed adjustment and distance
management capabilities in response to the changing speeds of the vehicle ahead,
reflecting compliance with ACC.3.

A failure occurs if the ego vehicle either fails to decelerate adequately or
maintains a distance to the lead vehicle that falls below the minimum safe
distance threshold. Such outcomes indicate shortcomings in the ACC system’s
ability to dynamically adapt to deceleration events in the traffic flow.

Requirement ACC.5
Another test (acc other accelrate) evaluates the ACC system’s capability to
adjust the ego vehicle’s speed in response to the lead vehicle’s acceleration (Re-
quirement ACC.5). After initiating the scenario with both vehicles in motion
and the ACC activated, the lead vehicle’s speed is increased. The focus is on the
ego vehicle’s ability to autonomously accelerate in order to maintain a consistent
distance to the lead vehicle.

Success is achieved if the ego vehicle accelerates beyond a specified speed
threshold, indicating effective tracking and response to the lead vehicle’s in-
creased speed. This demonstrates the ACC system’s proficiency in adapting to
dynamic traffic conditions and maintaining safe, consistent following distances.

Failure occurs if the ego vehicle does not adjust its speed accordingly within
the test duration, suggesting a shortfall in the ACC system’s responsiveness or
its ability to maintain the specified safe distance under changing conditions.

Requirement ACC.6
This scenario (acc self accelerate) tests the ACC’s responsiveness to driver com-
mands for acceleration, as specified in Requirement ACC.6. It starts with the
vehicle initially accelerating to a nominal speed, then simulates the driver’s
command for further acceleration beyond this initial setting.

The test is successful if the ego vehicle accelerates to the specified higher
velocity, demonstrating the ACC’s ability to prioritize driver commands over
maintaining preset safe distances.

If the vehicle fails to reach the commanded speed within the allocated time-
frame, the test fails, indicating the ACC’s potential overemphasis on distance
control at the expense of driver intent.

140

This test is crucial for assessing the ACC system’s flexibility in integrating
driver preferences.

Requirement ACC.7
Requirement ACC.7 specifies the deactivation of the ACC system upon receiv-
ing relevant user inputs, allowing the vehicle to revert to manual control per
the driver’s commands. This requirement emphasizes the importance of driver
control and the system’s adaptability to seamlessly switch between automated
and manual driving modes, contrasting with the focus of ACC.1 and ACC.2
on system activation and maintaining safe distances, and ACC.4’s emphasis
on system response to close proximities without driver acceleration commands.
This is effectively tested by simulating a situation where the driver decides to
manually override the ACC’s controls, leading to its deactivation.

Requirement ACC.8
The test (acc deactivation) assesses the ACC’s deactivation in response to a
driver’s braking command, as specified in Requirement ACC.8. It begins with
the ACC activated and the vehicle in motion. The scenario then simulates a
braking command by altering the target speed. Success is determined by the
vehicle’s compliance with this new speed setting, effectively demonstrating the
ACC’s deactivation and the vehicle’s manual control. This test underscores the
importance of ACC responsiveness to ensure driver control and safety.

ACC System Validation Summary
The implementation of the ACC system testing and validation, successfully
meeting all outlined requirements (Requirements ACC.1, ACC.2, ACC.2, ACC.3,
ACC.4, ACC.5, ACC.6, ACC.7, ACC.8), thereby ensuring its capability to
maintain safety margins, adapt to dynamic traffic conditions, and respond to
driver inputs for activation, deactivation, and manual control overrides.

16.4 Lane Change Assistant

The LCA driving function (LCA) enables the vehicle to automatically and safely
change lanes without the need for a driver to perform manual steering. The
driver is able to press a button which indicates into which lane they would
like to change. The driving function then checks whether the lane change into
the target lane can be safely performed, i. e. , whether there are obstacles or
other vehicles in the way, and perform the lane change if possible. Steering
commands of the driver that exceed a certain threshold deactivate the LCA,
so the driver can break off the maneuver by turning the steering wheel. The
LCA can also be deactivated by pressing a button. In contrast to the LKA,
after manually overruling the LCA by turning the steering wheel far enough, it
must be manually re-initialized by the driver so that the car does not perform
any unforeseen steering maneuvers after the steering commands of the driver no
longer exceed the threshold.

In Figure 16.5 an example is given where the ego vehicle is driving on the
middle lane. After the LCA was given the command to drive to the left lane
by the driver, the vehicle should at some point in time drive on the left lane —
having performed a lane change.

141

Figure 16.5: LCA scenario

16.4.1 General Requirements

• The LCA must be able to be switched on or off

– The LCA can be toggled by user input

– The LCA can be switched on by startup flag

• The ego vehicle must identify when a lane change is needed

• The LCA must ensure the ego vehicle only changes lanes when safe to do
so, adhering to velocities and the StVO

• The ego vehicle must stay in its current lane if a lane change is not possible.

• The ego vehicle must execute a lane change as soon as it’s safe

• The controller should be based on model prediction to ensure smooth and
safe lane changes

• During a lane change, the ego vehicle must

– Maintain a minimal safety distance

– Use steering angles fitting to its current speed

• The driving function of the LCA must deactivate after a successful lane
change or if it is deactivated manually

16.4.2 Functional Requirements

Requirement LCA.1
GIVEN

• The ego vehicle is operating at a constant velocity

WHEN

• The initial lane is confirmed to be empty and is expected to remain so
until the lane change is executed

THEN

• The LCA remains engaged, monitoring for the possibility to change lanes

142

Requirement LCA.2

GIVEN

• The ego vehicle is operating in driving mode, with LCA engaged

WHEN

• The LCA identifies that a lane change can be executed

• There is no car in the lane to change to, or if there is, the velocities and
the StVO permit the lane change

THEN

• The LCA executes the lane change while ensuring

• – The ego vehicle adheres to a minimal safety distance

– The ego vehicle uses steering angles fitting to its current speed

Requirement LCA.3
GIVEN

• The LCA is engaged.

• A lane change has been initiated

WHEN

• The lane change is completed successfully

THEN

Requirement LCA.4

• The driving function of the LCA deactivates automatically

GIVEN

• The LCA is engaged

WHEN

• The LCA is deactivated manually by the operator

THEN

• The LCA ceases to initiate or continue a lane change, and the ego vehicle
continues to drive in the current lane

143

16.4.3 Implementation

The LCA is based on the MPC described in Section 14.2. Its function is to
create a trajectory for the lane change. The trajectory is constructed using a
timestep of 0.1 s. The LCA can be in one of four states:

1. Inactive

2. Changing

3. Pulling Straight

4. Completed

How the LCA switches between these states is shown in Figure 16.6. Before
activation, it is always in the Inactive state. When activating it with a direction
(left or right), the LCA switches into the Changing state. Here, the lane change
maneuver is planned and executed. At each step, it checks whether the lane
change is complete, i. e. , whether the vehicle is in the target lane and has a
heading that is pointing along the target lane within 0.05 rad.

If this is the case, the LCA changes into the Completed state, from which it
directly changes into the Inactive state and deactivates itself. If the vehicle is
in the target lane and does not have a heading that is within the error bounds
around the heading of the target lane, but there are less than 10 steps left in
the trajectory, the LCA changes into the Pulling Straight state and appends
the trajectory by creating a trajectory that follows the lane center. It stays in
this state until the heading is within the error bounds and then changes into the
Completed state, from where it changes to the Inactive state and deactivates
itself.

Within the Changing state, the actual planning of the lane change trajectory
is conducted. The trajectory is re-planned once every second to ensure that
current information about the environment is included. The trajectory consists
of three sections.

The first section is a path through the current lane at the current offset of the
car with respect to the lane. This section is 100 meters long. The second section
is a straight path that starts at the end of the first section and goes at an angle
towards the target lane. It ends at the point where it intersects the target lane’s
center. The angle is relative to the first lane and is velocity-dependent. Slower
speeds lead to a steeper angle than faster speeds. The formula to calculate
the relative angle is max(C,K − v) where C is the minimum angle, K is the
maximum angle and v is the current velocity in meters per second. The third
section starts at the end of the second section and goes along the center of the
target lane for 500 meters.

The path consisting of these three sections is a list of points without addi-
tional information. These are transformed into a full state trajectory where the
velocity in each state is set to be the current velocity and the acceleration is set
to be 0 in all states. This is based on the assumption that the driver will not
make any significant velocity changes during the lane change maneuver. The
resulting trajectory is then transformed into an MPC problem and solved to
obtain the next control signal. From these, only the steering angle is given to
the vehicle, as controlling the acceleration is not the task of the LCA. When
re-planning the trajectory, the sections that have already passed are discarded

144

Inactivestart Changing

Pulling Straight

Completed
activate change complete

change not complete

in target lane
∧ steps left < 10

∧¬straight
straight

not straight

deactivate

Figure 16.6: The states and state changes of the LCA.

145

and the planning starts with the current section and from the current point of
the vehicle. The current section is planned only for the remaining number of
steps in that section.

16.4.4 Tests

A scenario is loaded where the ego vehicle is initialized on an empty road.
This environment is devoid of any other vehicles to simulate an unobstructed
condition for a lane change. A timer is started to measure the execution time
of the test.

Turning the LCA on and off is a general requirement for the ego vehicle.
When the LCA is engaged, it is expected that the ego vehicle will identify when
a lane change is necessary and execute it if safe to do so. The designed test
(lca basic) enables the LCA. The ego vehicle will change lanes to the left, given
the initial lane remains empty.

Requirement LCA.1 The ego vehicle should initiate the lane change im-
mediately after the velocity threshold is reached. The condition for a successful
test (lca basic) is completing the lane change within 30 seconds without any ob-
structions. The test fails if the ego vehicle cannot change lanes or if the change
takes longer than 30 seconds to complete.

Requirement LCA.2 The test (lca behind blocked) is designed to ensure
that the ego vehicle does not change lanes when there is an obstacle behind it
within a certain safety distance. It demonstrates the LCA’s compliance with
safety regulations by not allowing a lane change when it would result in a dan-
gerous situation. Success is determined if the ego vehicle remains in the original
lane without attempting a change. Failure is indicated if the ego vehicle changes
lanes and breaches the minimum safety distance, thus failing to uphold the set
safety standards. The test (lca front blocked) is similar.

Requirement LCA.3 The LCA is tested for its ability to automatically
disengage after a successful lane change.

The test (lca basic) is considered successful if the ego vehicle executes the
lane change within the set parameters and the LCA disengages automatically.
This assesses the system’s ability to identify the completion of the lane change
maneuver and transition back to regular driving mode.

A failure in this test occurs if the ego vehivle does not complete the lane
change or if the LCA does not automatically disengage after the lane change is
completed. The LCA’s performance in returning the vehicle to standard oper-
ation without manual intervention is critical for user convenience and system
reliability.

Requirement LCA.4 This requirement examines the LCA’s responsiveness
to manual deactivation commands during a lane change process.

The test (lca deactivation) is successful when the LCA ceases the lane change
immediately upon manual deactivation by the operator and the ego vehicle
continues in its current lane without attempting to complete the lane change.

146

Failure to comply with the manual deactivation command or continuing the
lane change despite the command will result in a test failure. This test ensures
that the LCA respects driver inputs and can be overridden, providing essential
control back to the operator when needed.

Additional Test Scenarios
(lca front blocked): Assesses the LCA’s decision-making when the path in

the desired lane is obstructed. (lca no deactivation): Verifies that the LCA
does not disengage prematurely when encountering minor steering disturbances.
(lca not blocked): Confirms that the LCA proceeds with a lane change when
the path is clear and safe, without being overly sensitive to distant vehicles.
(lca speed blocked): Tests the LCA’s ability to detect and respond to fast-
approaching vehicles, preventing unsafe lane changes. (lca behind blocked): En-
sures that the LCA does not initiate a lane change when there is a vehicle close
behind, maintaining a safe following distance. Each test scenario aligns with the
goal to ensure that the LCA functionality can safely manage lane changes, re-
specting the system’s autonomous decision-making and also the driver’s manual
commands.

LCA System Validation Summary
The implementation of the LCA system underwent comprehensive testing and
validation, successfully meeting all outlined functional requirements (Require-
ments ACC.1 through ACC.8), thereby ensuring its capability to assist drivers in
safely changing lanes, adapting to traffic conditions, and responding accurately
to driver commands for system activation and deactivation.

16.5 Obstacle Avoidance

The OTA driving function ensures a safe overtaking maneuver when a static
obstacle is ahead. In Figure 16.7 the ego vehicle is located on the middle lane
and driving. In front of it — in a safe distance — an obstacle is located. In
a scenario with the OTA activated, this minimum distance is kept and a lane
change is performed in order to overtake the obstacle and resume with the
speed specified by the driver. The ego vehicle changes back to the middle lane
at some point so that a safe distance from the obstacle is assured. Lane changes
needed for an overtaking maneuver are considered safe as defined by the LCA
requirements in Subsection 16.4.2.

In the context of this project group,
”
obstacle avoidance“ originally ref-

ered to the avoidance of static obstacles, whilst
”
obstacle overtaking“ origi-

nally only referred to the overtaking of dynamic obstacles. These two aspects
were planned seperately in the beginning and received individual requirements.
However, both functionalities were eventually implemented in one shared com-
ponent, the OTA. Due to this, the term overtaking is now effectively used for
the maneuver in which a static or a dynamic obstacle is passed.

16.5.1 Requirements

Requirement OTA.1

147

Figure 16.7: Obstacle Avoidance scenario

GIVEN

• The OTA is enabled

• There is an obstacle in front of the ego vehicle coming closer, i. e. the
distance between the ego vehicle and some obstacle in the same lane ap-
proaches the minimum safe distance.

WHEN

• Occupancy of the left lane does not allow for a safe lane change.

THEN

• The ego vehicle brakes (eventually stopping) to maintain at least a mini-
mum safe distance with error margin from the obstacle at all times.

Requirement OTA.2

GIVEN

• The OTA is enabled

• There is an obstacle in front of the ego vehicle coming closer, i. e. the
distance between the ego vehicle and some obstacle in the same lane ap-
proaches the minimum safe distance.

WHEN

• Occupancy of the left lane allows for a safe lane change.

THEN

• The ego vehicle initiates an overtaking maneuver by changing lanes to the
left.

148

Requirement OTA.3

GIVEN

• The OTA is enabled and an overtaking maneuver was started by a lane
change to the left.

• There is at least one obstacle in the lane to the right of the ego vehicle.

WHEN

• Occupancy of the right lane does not allow for a safe lane change to reeve
back into the original lane.

THEN

• The ego vehicle remains in its lane and keeps its velocity.

Requirement OTA.4

GIVEN

• The OTA is enabled and an overtaking maneuver was started by a lane
change to the left.

• There is at least one obstacle in the lane to the right of the ego vehicle.

WHEN

• Occupancy of the right lane allows for a safe lane change to reeve back
into the original lane.

THEN

• The ego vehicle concludes the overtaking maneuver by changing lanes to
the right.

16.5.2 Implementation

Due to similarities in their requirements, it was decided to treat the avoidance
of a static obstacle as a special case of a regular overtaking maneuver. This
allowed for a single implementation that works in both scenarios. Refer to the
next section for more details.

16.6 Overtaking

The OTA driving function also ensures a safe overtaking maneuver when a
moving obstacle is ahead. In Figure 16.8 the ego vehicle is driving in the middle
lane. In front of the ego vehicle is another vehicle driving. The distance between
both vehicles is at least the safety margin distance. In a scenario with the OTA
activated, this minimum distance is kept and a lane change performed. The ego
vehicle changes back to the middle lane at some point so that a safe distance
from the other vehicle is assured.

149

Figure 16.8: Overtaking scenario

16.6.1 Requirements

Requirement OTA.5

GIVEN

• The OTA is enabled

• The vehicle is driving behind another vehicle and has at least minimum
safe distance including error margin

WHEN

• Overtaking is forbidden regarding the currently active road rules.

THEN

• The lane change to the left of the overtaking maneuver is blocked.

Requirement OTA.6

GIVEN

• The OTA is enabled

• The speed limit is vm

• The vehicle is driving behind another vehicle with velocity vb and has at
least minimum safe distance including error margin

WHEN

• vm − vb < 20km/h

THEN

• The lane change to the left of the overtaking maneuver is blocked.

150

16.6.2 Implementation

The OTA was designed to reuse the existent LKA, LCA and ACC. This decision
was made since these three components already provide most of the needed func-
tionality and are thoroughly tested, thus reducing complexity. An alternative
approach that was considered involved the implementation of the OTA with its
own MPC. This approach offers the possibility to reduce the whole overtaking
maneuver to a single trajectory to be solved, but prevents the internal usage of
the other driving functions, which is why it was ultimately discarded.

When the OTA is activated, the ACC is also always active until the maneuver
is finished, since the ego vehicle should maintain both its safety distance to
obstacles in front of it as well as a high speed at all times. Beyond that,
the overtaking process can be divided into the following five states, with the
transitions between these states being depicted in Figure 16.9.

1. Inactive: The OTA is enabled but the conditions to overtake are not met
yet.

2. Change Left: The ego vehicle starts the overtaking maneuver by chang-
ing to the left lane.

3. Overtake: The ego vehicle maintains high speed to quickly pass the
obstacle(s) on the right lane.

4. Change Right: The ego vehicle reeves back into its original lane respect-
ing safety distances.

5. Completed: The overtaking maneuver is completed.

In the initial state, the LKA is used in addition to the ACC, such that the
ego vehicle either maintains the current lane and specified speed if possible, or
stays closely behind an obstacle in front of it until the actual overtake begins.
If the OTA then retreives the information that an overtake is possible from
the OTAI (see Section 15.3), it switches to the Change Left state and uses
the LCA. From there, a signal from the LCAI (see Section 15.2) indicates the
finished change, which results in a switch to the Overtaking state. The ACC
and LKA then simply maintain the current lane and speed (if possible) for as
long as the right lane is occupied. After passing the obstacles (including safety
distance), the OTAI signals that the ego vehicle can reeve back and the OTA
switches to the Change Right State, using the LCA again. As soon as the change
is completed the overtaking maneuver is considered done and the OTA awaits
its deactivation.

16.6.3 Tests

Requirement OTA.1 The dedicated test (ota obstacles) validates the condi-
tions from Requirement OTA.1. For that, additional to a static obstacle in front
of the ego vehicle that should be overtaken, another static obstacle is placed on
the left lane besides the ego vehicle. The test is considered to be successful if
the ego vehicle starts an overtake maneuver only after the obstacle on the left
is passed.

151

Inactivestart Change Left

Overtaking

Change RightCompleted

can overtake

lane change completed

can reeve back

lane change completed

deactivate

Figure 16.9: The states and state changes of the OTA

Requirement OTA.2 & Requirement OTA.3 & Requirement OTA.4
These requirements are validated by multiple tests (ota dynamic, ota obstacles
and ota static). They aim to provide a variety of situations that allow for a
complete overtake, using both static and dynamic obstacles in front or besides
the ego vehicle. All of these tests are considered sucessful if the ego vehicle
first does a change to the left lane and then does another change to the right
lane as soon as the obstacle on the right lane is passed. An additional test
(ota blocked other vehicle) checks whether the OTA is also correctly blocked
when another vehicle on the left lane approaches too fast to enable for a safe
first lane change.

Requirement OTA.5 Another test (ota blocked sign) validates the adher-
ence to the

”
no overtaking“ road sign. It uses a world with two road signs for

this purpose. The initial sign creates a
”
no overtaking“ zone, such that the ego

vehicle is forced to drive behind the slower vehicle in front, without attempting
to overtake it. The second sign annulates the previous

”
no overtaking“ rule.

The test is therefore considered sucessful if the ego vehicle starts an overtake
maneuver only after passing the second sign.

Requirement OTA.6 This requirement is tested analogously to the previous
one. Its dedicated test (ota blocked speedlimit) also uses two signs, where the
first one conducts a speed limit of 80km/h. Since the vehicle in front of the ego
vehicle does not drive with over 20km/h less than the ego vehicle, the overtake
should be blocked until the second sign annulates the speed limit. The test
is therefore considered sucessful if the ego vehicle starts an overtake maneuver
only after passing the second sign.

152

OTA System Validation Summary
The testing and validation of the OTA system confirmed its successful align-
ment with all predefined requirements (Requirements OTA.1 through OTA.5),
effectively ensuring the system’s ability to safely overtake an obstacle in front,
under various driving conditions.

16.7 Platooning

The Platooning driving function should assure that a convoy-like formation is
created and kept. In Figure 16.10 the ego vehicle is located on the middle lane
and driving. Behind it is another vehicle and behind that another. All the
vehicles keep the same distance from each other which is within a predefined
range. In contrast to the ACC driving function, the last member of the platoon
should immediately react to breaking by the EGO vehicle. The ACC driving
function only reacts to the vehicle directly in front of itself. Thus communication
between members is a requirement.

Figure 16.10: Platooning scenario

The framework of TurtleCar is suited for the implementation of platoon-
ing. It is important to note that within this project group, only a concept for
platooning is developed. The project group’s focus layed elsewhere and thus
no requirements for a controller were elecitated as only the basic communica-
tion infrastructure was planned. Research shows that implementation of the
concept is feasible, and the needed communication infrastructure and interface
are included in the project. However, a platooning controller is not developed
due to time constraints. Additionally, current state-of-the-art platooning imple-
mentations are presented and some of the methods used are adapted to enable
seamless integration for possible future project groups.

For this driving function no requirements were elicitated. The project group’s
focus was placed elsewhere and thus it was not worked on initially. Since one of
the scenarios described platooning as a desired driving function at least a basic
communication infrastructure is provided.

State of the Art

Platooning or Cooperative Adaptive Cruise Control (CACC) describes the inter-
communication between Vehicle-to-Everything (V2X) [65]. This communication

153

model is also used by the AuNa (Autonomous Navigation System Simulator)
framework [29]. The presented concept is based on this with additional exten-
sions. The CACC controller includes the algorithm for the position calculation
including vehicle dimensions and distances. However, it should also be men-
tioned that this is a simulative environment, where an extra server or client is
also used for communication, which the TurtleCar-Core does not provide. It
is also used with callback functions that follow a time interval [29], which is a
functionality provided by ROS.

There are also CACC Platform implementations that follow a practice-
orientated approach, as shown by textscPohlmann et al. [65]. Although a simu-
lator is also used here, the paper refers primarily to the hardware and software
implementation of the ROS and Microros components, which fulfill a real-time
part of the system. In conclusion, this research shows the feasibility of creating
a working platooning implementation on the TB platform using the mentioned
technologies.

Furthermore, the master’s thesis by Philipp Fritz Jaß confirms the presented
concept in a similar form. However, that platooning implementation uses a
different platform, which makes it difficult to establish a direct connection. The
architectural approaches are the same but cannot be compared directly with
TurtleCar-Core [34].

Interface defintion

This subsection presents a top-down view of the interface and what it needs
to provide to be capable of platooning. The interface is defined as a hook-in
module, which means that the functionality can be activated or deactivated as
required. This way all other driving functions remain uninfluenced by creat-
ing the interface for platooning. The hook-in module does not depend on any
functions in the TurtleCar-Core framework. It also offers some configuration op-
tions: A configuration must include which sensor data should be shared, which
driving functions are to be activated, and how many vehicles will communicate
with each other. Different communication paradigms are realized by the defini-
tion of the communication interface. As an example, it might make sense for a
member of a platoon to notify other members about a collision risk. A member
who has already passed such risk does not have to be notified, however.

Since the basic functionality of TurtleCar-Core is used, platooning can be
viewed similarly to a sensor: various events transmit data which is analyzed
by a sensor evaluator. Then the relevant data is written into the model. This
data can then be reacted to accordingly by a controller, which implements the
platooning driving function. The parts affected by platooning can be seen in Fig-
ure 16.11.

Platooning topics are defined externally and can be subscribed to. Events are
defined in advance accordingly. Each event can be uniquely identified, e. g. the
Collision Risk, Collision, Obstacle detected event exists below Figure 16.12.
Each of these events is sent as a message, including the respective identifier of
the vehicle as well as its current coordinates. A map can thus be built up, which
allows making statements about the entire geometric space currently measured.

154

Figure 16.11: Parts of TurtleCar-Core used by the platooning module

Figure 16.12: The defined events for the Platooning node

Communication

The platooning messages are the basis of all communication within the network
and allow the broadcasting of the positions of platoon members regularly. The
message format includes an identifier and the necessary information about the
publishing vehicle’s position.

Communication within a platoon is possible in different ways. A general case
is depicted in Figure 16.13. By nature of the ROS network, all communication
at the lowest level is done via broadcasting. That way all events received within
a platoon are shared via a single topic. Thus the implemented controllers and
evaluators of the respective vehicles that handle platooning have to use commu-
nication different from a broadcast. In Figure 16.13 there are however also topics
within the namespace of each participant. Sending a message to such a topic
represents a direct communication between two participants. The messages are
still broadcast, but only received in a single namespace, which all participants
could still receive. However, the encapsulation using the namespace concept
indicates the usage as non-broadcast communication.

A header message with the necessary information about the communication
participants thus has to be defined. This approach is seen in Table 16.4.

For bidirectional communication in platooning mode, ROS services can be
utilized. As services, they are designed to provide a result and can only be hosted
by one peer at a time, allowing the representation of a decentral communication

155

Figure 16.13: Communication via ROS

Table 16.4: Platooning Header

Parameter Type Description Notes

identifier string Identifier of sending ve-
hicle

destinations string[] Identifiers of vehicles
that should be reached

Should be empty for
broadcast

paradigm.

Events use custom messages from the new platooning messages interface.
These messages enable different communication paradigms by using the pla-
tooning header or being offered as services. In Table 16.5 an exemplary def-
inition of such a custom message is given. This is done similarly to how the
previously mentioned AuNa defines messages for communication [29].

Table 16.5: Definition of ObstacleDetected

Parameter Type Description Notes

header platooning header Header with
communica-
tion informa-
tion

-

obstacle type unit8 Information
about the
type of obsta-
cle

-

obstacle vertices geometry msgs/Point[] Vertices of
the detected
obstacle

In global coor-
dinates

156

Implementation

In order to provide a proof-of-concept for the communication infrastructure
necessary for platooning, the use case for sharing information about obstacles
was chosen. Members of a platoon should be able to update their respective
environment models using information gathered by other members to include
obstacles that they can not observe using their own sensors. This may be the
case when the sight to the obstacle is obstructed or the obstacle is outside of the
sensors’ range. This proof of concept assumes that all vehicles share a common
reference frame. This can be easily created by using global coordinates of a
simulated environment. In real life, a synchronisation mechanism would have
to be implemented, which was out of scope for this project.

For this, a common topic /platoon_events is used by all platoon members.
Each member regularly broadcasts String messages to that topic. As they are
a proof of concept, the messages are a simplified structure compared to the
one defined above. Each message contains a String representation of a JSON
object. The object can represent several types of messages and has the following
structure:

Table 16.6: Definition of a PlatoonEvents message

Name Type Description

type String Either ObstacleDetected or TurtleCarPosition
data JSON Object Information depending on the type

The ObstacleDetected message contains information about the position,
width and length of an obstacle. Each platoon member regularly broadcasts
messages for all its known obstacles. The structure of the data object of this
message can be seen in Table 16.7.

Table 16.7: Definition of the data object of an ObstacleDetected PlatoonEvent
message

Name Type Description

ID Integer The ID of the obstacle as determined by the sensing
vehicle

obstacle type String RoadSign, StaticObstacle or TurtleBotPlate
x Float The x coordinate of the obstacle
y Float The y coordinate of the obstacle
width Float The width of the obstacle
length Float The length of the obstacle

This is limited to obstacles that have been perceived by its own sensors
to avoid sending duplicates. If a platoon member received such a message, it
integrates the obstacle into its own environment model. To avoid duplicating
an obstacle that it already knows, it checks whether it knows the ID of the
obstacle or if the distance between the received obstacle and any known obstacle
is smaller than a threshold value.

The TurtleCarPosition message contains information about the position of
a platoon member. Each platoon member regularly broadcasts its own position

157

using this message. The structure of the data object of this message can be
seen in Table 16.8. The receiver integrates the position into its environment
model in the same way as for other obstacles.

Table 16.8: Definition of the data object of an TurtleCarPosition PlatoonEvent
message

Name Type Description

ID Integer The ID of the obstacle as determined by the sensing
vehicle

obstacle type String RoadSign, StaticObstacle or TurtleBotPlate
x Float The x coordinate of the obstacle
y Float The y coordinate of the obstacle
width Float The width of the obstacle
length Float The length of the obstacle

The resulting environment models when sharing obstacle information be-
tween platoon members can be seen in Figure 16.14. The top half of the image
shows the simulation with three vehicles, which are members of the same pla-
toon. Vehicle 1 can see vehicle 2, but not the obstacle and vehicle 3. Vehicle 2
can see vehicle 1 and the obstacle, but not vehicle 3. Vehicle 3 can only see the
obstacle. The bottom half shows the visual representation of the environment
models of each vehicle. It can be seen that all vehicles know the position of all
other vehicles as well as the obstacle.

Figure 16.14: A simulated environment with three platoon members sharing
their positions and obstacle information.

158

16.8 Constraints on Driving Function

Multiple driving functions are generally unable to be activated at the same time,
because of conflicting control inputs. For example, the LKA wants to keep to
the center of its current lane, while a LCA wants to move from the current lane
to another. This section describes constraints on the simultaneous activation of
driving functions. Since there are conceptual differences between an approach
based on MPC and approaches that aren’t based on MPC a distinction between
these is made.

16.8.1 Classic Approach

Based on the implementations for different driving function, it is apparent which
control inputs a given controller calculates. These inputs are then used to
control the vehicle. This information provides a way to establish which driving
functions can’t be active simultaneously. Using this approach first results can be
seen in Table 16.9. The + symbolizes that the functions can be used together,
while the - symbolizes that they cannot. The black boxes means that they are
the same function.

Table 16.9: Driving functions that can be active simultaneously

Driving
Function

LKA ACC LCA CAS Overtaking

LKA + - - -
ACC + + + -
LCA - + - -
CAS - + - -
Overtaking - - - -

It is apparent, that most driving functions can’t be used at the same time.
An exception to this is the ACC which can be used in conjunction with one of
the other functions that don’t generate an input for accelaration.

However, this does not show the whole picture, as some driving functions
behave similarly to others, like Overtaking and Obstacle Avoidance. At their
core, these functions make the vehicle change the lane to drive past another
object. In the case of Overtaking this object is also moving, while for Obstacle
Avoidance it remains stationary. Additionally, both functions make the vehicle
change back to its original lane after avoiding an obstacle. This behavior can
be compared to using the LCA twice.

The fully autonomous vehicle has to drive in a safe way, which implicitly
establishes a hierarchy for the driving functions. The vehicle should use the
Obstacle Avoidance or Overtaking driving function if there is an impending
collision with another object, rather than using the ACC or LKA.

Platooning behaves a bit differently here because the leader of the platoon
(the ego vehicle) is set to act using possibly all other driving functions, while
the platoon members should just mimic the ego vehicle’s actions and not use
the functions themselves. This way the members aren’t involved in planning
actions, but just in the perception of fellow members and looking out for possible
collisions with non-platoon objects.

159

16.8.2 Model Predictive Control Approach

The MPC consists of two layers. First, there is a path planner and second, there
is a path follower. Every function can be implemented using either layer, with
different degrees of complexity. This changes how driving functions interact
with each other. For example, the Obstacle Avoidance function can define the
constraints for a trajectory to forbid

”
driving through“ an obstacle. This forces

the path follower to drive around the obstacle automatically if the trajectory is
still feasible. The other option is to re-plan the trajectory around the obstacle.
This would mean that the main function of the Obstacle Avoidance is done in
the planning layer. These ideas are the same for Overtaking.

Having more than one MPC-based controller run at the same time would
mean following multiple trajectories. This may lead to conflicting goals of the
participating controllers and is therefore discouraged. From the driving func-
tions developed within this project group, only one of the LCA, LKA or OTA
can be used at a time. Since the driving functions using MPC are only used
to control the steering angle, it is possible to combine either of the MPC-based
controllers with the ACC which only controls the acceleration and is not MPC-
based. It is, however, necessary to update the trajectories and constraints of the
MPC-based controller regularly as the acceleration is changed by the ACC. It is
important in these situations to ensure that the acceleration does not change to
frequently, since the model prediction will be differing from reality if it assumes
a constant acceleration. This can be mitigated by predicting the acceleration
set by the ACC.

Another caveat for the ACC if approached in an MPC context, is that it
requires constant monitoring of the lead vehicle. The acceleration of the ego
vehicle based on the lead’s vehicle speed and acceleration as well as the distance
between the two should be able to change often. This results in a constant
updates for the MPC, which is not something that should be done in the MPC
approach.

One overall solution to the problems described would be to design one tra-
jectory that combines the functionality of the ACC and the other active driving
functions. This can be sed as input for an MPC which can generate optimal
control signals for both acceleration and steering and therefore has complete
knowledge of the vehicle input and state for each time step, resulting in a better
prediction.

160

Chapter 17

Scenarios

17.1 Main Scenario

The
”
main“ scenario is designed to adhere to German traffic laws, specifically

focusing on passenger cars (PKW) and excluding commercial trucks (LKW).
The traffic scenarios simulated within this framework are bound by speed limits
of 80 km/h or areas with unrestricted speed, reflecting the typical regulations
found on German autobahns. Also a sign for a restriction for overtaking is
used. Given the constraints of the highway scenario, many of the aforementioned
dangerous driving behaviors are not directly applicable; however, the emphasis
on speed regulation adherence and lane discipline remains paramount. Within
this scenario, all vehicles strictly follow the German traffic regulations pertinent
to passenger cars, with particular attention to speed limits and overtaking rules.
This not only ensures the realism of the simulation but also enhances the safety
and reliability of the autonomous driving algorithms under test.

Two primary causes of dangerous situations identified for in-depth analysis
within this framework are unexpected lane changes and sudden braking. These
events are of particular interest due to their high relevance on highways and
their potential to cause significant accidents. By simulating these events within
a legal and realistic framework, the project groups aims to rigorously test the
autonomous vehicle’s response mechanisms. The vehicles’ ability to adhere to
traffic laws while effectively handling sudden changes in the traffic environment
is critical for the development of safe and reliable autonomous driving tech-
nologies. Furthermore, this scenario facilitates the examination of autonomous
vehicles’ behavior in both regulated speed zones and on sections of autobahns
without speed limits. This dual approach allows for a comprehensive assessment
of the vehicles’ speed management, overtaking strategies and general adherence
to traffic regulations, providing valuable insights into their operational safety
and efficiency.

In conclusion, the main scenario represents a significant step towards the
development of autonomous vehicles that are not only technologically advanced
but also fully compliant with traffic laws. By grounding the simulations in the
realities of German autobahn driving, the project groups aims to pave the way
for the safe integration of autonomous vehicles into public roadways, ensur-
ing that they can coexist harmoniously with human drivers and adhere to the

161

established rules of the road.

17.2 Rogue Actor

A rogue actor represents a vehicle that does not adhere to the expected traffic
rules or behaviors, potentially creating dangerous situations. In the context of
the scenarios, ‘Rouge Actor Scenarios’ involve dangerous situations created by a
rogue actor on the highway, where interactions are limited. These scenarios are
designed to test the autonomous driving functions of the vehicles in handling
sudden, unexpected behaviors from other vehicles on the road.

In a paper by Keonhee&Akira, an analysis of the most frequently occur-
ring dangerous driving events is conducted based on recorded data from over
3,600 study participants [56]. The analysis reveals that the most common dan-
gerous road situations include stop sign violations, followed by interference with
pedestrians, traffic light violations, and speeding. Other sources report similar
findings, highlighting these violation types as frequent causes of accidents. Ad-
ditionally, other factors contributing to accidents and dangerous road situations,
such as tailgating, reckless driving, unsafe lane changes, and driving under the
influence are listed [89]. However, given that the scenarios are confined to the
environment of a highway, the range of dangerous situations that can be simu-
lated is limited. For instance, the scenarios assume that the only present road
users are vehicles and that there are no traffic lights to consider. These limita-
tions narrow the scope of rogue actor scenarios that can be simulated within the
environment. Two causes of dangerous situations, become particularly relevant
for testing of the autonomous vehicles: (1) unexpected lane changes and (2)
unexpected braking, both of which are replicable in the simulated environment.

17.2.1 Scenario 1: Unexpected Lane Change

Description: This scenario simulates a situation where a rogue actor performs
an unexpected lane change in front of the ego vehicle. The scenario aims to test
the vehicle’s ability to detect the dangerous lane change quickly and to adjust
its driving path accordingly to maintain a safe distance. The scenario can be
seen in Figure 17.1a.

How to replicate this scenario:

1. Initialize the simulation environment on a straight road with two vehicles
starting side by side.

2. Define which vehicle is controlled autonomously and which one is the rogue
actor.

3. Start both vehicles at the same time, with equal constant acceleration.

4. Manually increase the acceleration of the Rouge Actor, accelerate in front
of the autonomous ego vehicle and switch to its lane a short distance in
front of it.

5. Monitor the autonomous vehicle’s response to the unexpected lane change.

162

17.2.2 Scenario 2: Unexpected Braking

Description: In this scenario, a rogue actor starts at a safe distance in front
of the autonomous ego vehicle, and after driving for a moment, abruptly brakes
to a lower speed. This scenario tests whether the vehicle is able to react quickly
enough and keep a safe distance to the unexpectedly braking vehicle. The
scenario is depicted in Figure 17.1b.
How to replicate this scenario:

1. Initialize the simulation environment on a straight road with two vehicles,
the Rouge Actor starting two vehicle lengths in front of the autonomous
one.

2. Start both vehicles with the same acceleration.

3. Briefly brake with the Rouge Actor to decrease the distance to the vehicle
following it.

4. Monitor the autonomous ego vehicle’s reaction in this situation, is it able
to restore a safe following distance?

(a) Example of an unsafe lane change sit-
uation.

(b) Example of a vehicle suddenly brak-
ing.

163

164

Chapter 18

Organization

This section describes everything related to the internal organization of the
project group. A more detailed description on how the product vision will be
achieved is provided here.

18.1 Milestones and Timeline

In order to reach the project group’s goal, the following four milestones as listed
in Table 18.1 were defined in the beginning.

Table 18.1: Planned milestones

Milestone Start date End date
MS 1: Lane keeping assistant and funda-
mental architecture

05.05.2023 08.09.2023

MS 2: Adaptive cruise control and basic
testbed features

09.09.2023 28.09.2023

MS 3: Autonomy Features, Robot Vision 29.09.2023 22.12.2023
MS 4: Rogue actor and platooning 23.12.2023 07.03.2023

Furthermore, a more detailed time schedule depicted in Figure 18.1 was
offered initially. The thick vertical lines depict the end of a milestone. Addi-
tionally, the epic can be grouped together as follows: driving functions (green),
test framework (orange), obstacle avoidance (purple), platooning (blue), docu-
mentation (yellow), and higher-level (grey).

Later, the milestones and the timeline were adjusted regarding the content
and duration as agreed upon with interested parties. This had to be done due
to unexpected drawbacks like cases of illness and a member resigning. These
changes are depicted in Figure 18.2.

This rework results in the following new timeline in Table 18.2.
In regard to content, the scope of sensor fusion was reduced in a way that the

product vision would still be fulfilled. A theoretical approach was promised but
not an implementation. Additionally, the scope of platooning was reduced since
it was planned as an optional goal. Hence, the definition and implementation
of a fundamental architecture for platooning was promised to enable a simple
starting point in implementing platooning for future works.

165

Figure 18.1: Gantt chart of epics

Figure 18.2: Rework of the epics’ gantt chart

18.2 Sprint-flow

The previously defined milestones will be archived in an agile way using the
scrum process [77]. A sprint lasts three weeks and consists of the following
aspects:

• Feature-Planning (FP)
In this phase Product Owner (PO) and Business Engineer (BE) and all
interested parties consider which features should be developed in the future
to reach the milestones. The features are recorded in Jira. Tickets are

166

Table 18.2: Rework of the planned milestones

Milestone Start date End date
MS 1: Lane keeping assistant and funda-
mental architecture

05.05.2023 08.09.2023

MS 2: Adaptive cruise control and basic
testbed features

09.09.2023 28.09.2023

MS 3: Autonomy Features, Robot Vision 29.09.2023 15.02.2024
MS 4: Rogue actor and platooning 16.02.2024 21.03.2023

created that contain the needed requirements.

• Implementation
During this period, the tickets are processed, documentation is written,
and reviews are performed by others so that they can finally be merged.

• Review
The goal of the review is to bring all stakeholders up to date. It should
be mentioned which goals have been achieved and the progress should be
presented.

• Retrospective
The team sits down internally at the retrospective at the end of the sprint
and draws a summary. The focus is on filtering out problems, exploring
possible solutions and citing positive aspects.

During the sprint, a weekly serves as an exchange with the stakeholders
by giving a quick presentation of last week’s progress. Internally, meetings
are scheduled twice a week. Once every sprint, a refinement of the backlog is
planned which is done to facilitate the feature planning and refine Jira tickets
to enable faster sprint plannings.

18.3 Sprint Workflow

To assure that all members follow the same workflow regarding the arising tasks
during a sprint, the following well-defined workflows have been agreed upon. For
example, every sprint follows a specific workflow. An overview is given in Fig-
ure 18.3, where every colored step (except the

”
Sprint planning“) resembles one

column in a Jira Sprint Board, as it is shown in Figure 18.4. First, the sprint
has to be planned. Every ticket in the sprint is then assigned to one or more
people. When they have finished processing the ticket, it goes into review and
finally into acceptance by the PO or BE.

Since some of these steps are complex in nature, it is important to clearly
define their respective workflows. This is done by the following diagrams, with
continued usage of the color coding as seen above. The

”
Sprint planning“ work-

flow is described in Figure 18.5. The activity
”
To-Do“ is empty, as this step

only consists of waiting for any ticket-related work to start, thus requiring no
well-defined workflow. The workflow described in Figure 18.6 shows how tickets
that are in progress should be worked on. The workflow for

”
To Review“ and

167

Figure 18.3: Overview of how the work on items in a sprint is done.

Figure 18.4: The states of an issue as represented in the Jira board.

”
In Review“ is shown in Figure 18.7 and the workflow for finalizing a ticket is

described in Figure 18.8.

168

Figure 18.5: Sprint planning workflow

169

Figure 18.6: Work in Progress workflow

170

Figure 18.7: To Review and In Review workflow

171

Figure 18.8: In Acceptance workflow

18.4 Defintion of Done

A ticket is considered done if the following requirements are fulfilled:

• Functionality implemented

• Reproducibly tested

• Documented

• At least three persons were involved in implementation and review, at
least one of them is only a reviewer

• All acceptance criteria are met

• Accepted by PO or BE

18.5 Roles

The project group consists of eleven students. Each member is a developer, but
some also fulfill different roles or focus on certain topics. These roles with the
member’s names inside this project are listed below.

Scrum Master (Carl Schneiders) : The Scrum Master ensures conformity
to Scrum practices and maintains the team’s processes. Carl is responsible for
removing obstacles in the process and organizing retrospectives.

172

Product Owner (Marie Marken) : As the Product Owner, Marie creates
and maintains the product vision in consultation with the group and other inter-
ested parties. She communicates with BTC ES, Foundations and Applications of
Systems of Cyber-Physical-Systems and Distributed Control in Interconnected
Systems. Additionally, she maintains the backlog, organizes feature planning,
and leads sprint planning and sprint review.

Business Engineer (Lasse Heckelmann) : The Business Engineer sup-
ports the Product Owner in her tasks and keeps track of the project. Lasse also
provide a point of contact for specialized questions.

Documentation Steward (Nellson Eilers) : Nellson is responsible for
keeping track of the internal wiki, ensuring that everyone documents their work,
and adhering to conventions regarding documentation.

Infrastructure (Malte Grave) : Malte maintains the server infrastructure,
ensuring that everyone can work smoothly. Additionally, he offers technical
support as needed.

Code Steward (Jan-Magnus Monenschein) : Jan-Magnus ensures that
the code quality meets the desired level by specifying rules and principles for
working on the code base. He also assists with Continuous Integration/Contin-
uous Deployment (CI/CD) and configuring development tools.

Technical Lead (Simon Struck) : Simon has an oversight of the entire
system, responsible for the creation and management of data transfer protocols.
They also evaluate technical feasibility of various aspects of the project.

Quality Analysis (Filip Wojciak) : Filip Wojciak ensures product func-
tionality by testing it thoroughly. He is tasked with testing the product and
ensuring it fulfills all requirements.

Developer (Julia Debkowski) : Julia assists with software development
and keeps track of the project’s progress.

Software Architect (Stefan Gerber) : Stefan maintains the architecture
of the software and serves as a contact for architectural questions.

PR work (Paulina Kowalska) : Paulina is responsible for public relations
work and planning events related to the project.

18.6 Tools

For easier collaboration, using a few tools proved to be essential. Below, some
of these tools are presented.

173

Jira Jira is a popular project management and issue tracking tool developed
by Atlassian. Jira helps to manage tasks efficiently, maintain transparency,
adapt to different project methodologies and collaborate effectively.
Jira allows teams to create, track, and manage issues, tasks, bugs, and user sto-
ries. This helps in maintaining a clear and organized list of work items, making
it easier to prioritize and address them. Also, Jira supports agile methodologies
like Scrum. It provides features such as sprint planning, backlog management,
and burndown charts to facilitate agile processes.
Furthermore, Jira is highly customizable. This enables the ability to have cus-
tom workflows, issue types, and fields to tailor it to a project’s specific needs.
Another important aspect is that Jira can integrate with a wide range of tools,
including source code repositories (i. e. Gitlab), CI/CD pipelines and more.

Discord Discord is used for communication within the team. A custom bot
called Hugo is used, which partially automates processes. Particularly, he re-
minds the group of the internal weekly deadline, helps with the estimation
process of user stories and can be used to list current merge requests and their
review status.

Gitlab Versioning is essential. Gitlab is used for this purpose. Repositories
for the following projects exist:

• Internal wiki

• Website

• Public Relations

• Project Report

• Server Configuration

• TurtleCar

Google Calendar To keep track of important dates Google Calendar is used.
Here all appointments as well as vacations are entered.

Etherpad Etherpad is used to share notes and to keep the agenda for meet-
ings.

174

Chapter 19

Public Relations

In this section, the presentation to the public will be addressed. This will cover
tasks performed during participation in events like the FleiWa, as well as the
management of the project group’s online presence, including a website and
Instagram account.

19.1 Quartierstag

Figure 19.1: Presentation at the Quartierstag

At the
”
Alte Fleiwa“ neighborhood, as part of its 100th-anniversary celebra-

tion the
”
Quartierstag“ was held. Here a first major milestone, the LKA, was

175

presented. This can be seen in Figure 19.1. During this event, local busi-
nesses, research institutions, organizations, and municipal offices provided in-
sights into their work. More information can be found on the following link:
https://quartierstag.de/ On behalf of the University and BTC-ES, current
findings were presented, a live demonstration was offered, a poster as seen in Fig-
ure 19.2 was created and the opportunity to examine hardware and software,
including the Visualizer was given.

Figure 19.2: Overview of the poster for the Quartierstag.

19.2 Website

In today’s world, it is of paramount importance to establish an online presence.
To this end, a digital presence was created. First, an Instagram account exists,
which will be actively curated in the near future. What is already accessible
by the public is the website. The project’s website displays the most important
information for the public. Its public domain is https://itraffic-uol.de/.

The website is a good way to document the progress being made over time
and to also show it to stakeholders. The content should primarily address the
goals of the project group. Progress should be documented as well as challenges
to avoid or not to repeat possible mistakes. The team represents the basic
building block of the project group and is therefore presented. This way, even
strangers who have nothing to do with the project group can build a good
understanding of it.

176

https://quartierstag.de/
https://itraffic-uol.de/

19.2.1 Dependencies

The following tools are used to create the website:

• Jekyll (Static Site Generator)

• Minimal Mistakes Theme for Jekyll

• Ruby’s bundler gem in order to manage the projects dependencies

• Gitlab CI/CD for building and deploying the site automatically

19.2.2 Content Review Policy

Since the content affects everyone and appears online, changes should be ap-
proved by everyone in advance. Joint reviews are mandatory.

19.3 Email

The teams public email address is: team@itraffic-uol.de

19.4 Instagram

The project group’s Instagram channel can be found here: https://www.inst

agram.com/pg_itraffic/

The Instagram channel is a bit more informal and is intended to represent the
project group away from the achievement of goals. For this purpose, insights into
meetings but also social events can be shared. Regularity to post is secondary.

177

https://www.instagram.com/pg_itraffic/
https://www.instagram.com/pg_itraffic/

178

Chapter 20

Outlook

In this section an overview is given on where the project group saw great po-
tential for further work. These ideas can be seen as having an extent ranging
from a smaller university course over a thesis up to another year long project
group. Some of these ideas have been considered during work on related tasks
within the project group. These were deemed to be too large in scope and not
relevant enough for the current goals, which is why they are discussed here.

This outlook is split in three parts. Each of corresponding to a product
the project group developed. Fist an outlook on possible driving function are
considered, second an outlook for TurtleCar-Test is given and lastly the possible
future regarding TurtleCar-Core is discussed.

20.1 Driving Functions

Controller for Platooning The first obvious starting point for continuing
to develop driving funtion in the context of the scenario used by the project
group is the implementation of the platooning driving function. Due to time
constraints only the communication infrastructure has been implemented as seen
in Section 16.7. Using these basic blocks the implementation should be relatively
straight-forward as all necessary sensor information is already provided. Here
the next steps can include depending on the desired complexity:

• Implement a controller that is able to send commands to all vehicles of a
platoon.

• A method to enter, leave or found a platoon.

• Negotiate which vehicle is the leader of the platoon.

• Identifiy safe ways to handle emergencies within the platoon, (i. e. the
failure of a vehicle)

With all these steps to consider this driving function is deemed to be of lower
complexity in contrast to other features considered in this outlook, because
only a single new controller has to be develop. Such a development process
for any controller is exactly what the project group envisioned when designing
TurtleCar-Core.

179

Developing other controller Developing any other controller for any pos-
sible driving function is also possible using the aforementioned development
process. All information about the environment is provided by the observer and
can be accessed by the controller under development. Such driving functions
have not been explicitly considered by the project group. One could image how-
ever manoevers such as merging into another lane in a high traffic situation or
create the emergency lane on the highway in case of a traffic jam.

Different Scenarios Other ideas brought forth during the discussions of new
driving function require a lot more work, because they are only applicable in en-
vironments different from the German autobahn, which was the project group’s
focus. One such idea is a slower paced environment with more precise manoev-
ers. Such an environment could for example be a parking lot.

Parking Lot A parking lot is generally a low-speed environment and the main
feature is parking. Since the TBs work with local knowledge only, searching and
evaluating if a parking spot is occupied or if it is large enough for the vehicle
in question. Then a manouver for different parking strategies has to be chosen
depending on size of the parking spot, the position of the vehicle relative to
the parking spot and the orientation of the parking spot. Since there are many
different types of parking spots and often other drivers don’t park perfectly
inside their spot, there are many challanges to consider. One such challange
is incoming traffic as there might be other vehicles trying to leave the parking
lot or used a different strategy trying to find parking spot. The ego vehicle is
supposed to give way if necessary before attempting a to park. Another such
challange is the handling of intersections. Here the right of way usually is right
before left, which the ego vehicle has to adhere to. This includes estimating if
crossing the interection can be done safely with traffic coming from the right.
While the function of parking is a more isolated case TurtleCar-Core could be
used all assumption based on the autobahn have to be removed and a new
environment has to be created.

City Traffic Similarly another idea produced throughout the project group
would also introduce the idea of incoming traffic and interesections. This would
be moving the environment to one based on city traffic. Here the amount of
challanges an autonomous vehicle faces can be sheer endless. There are people
close to the street and might try to cross the road in irresponsible ways. The
ego vehicle should ensure that still no damage to humans is done to humans.
This can possibly be implemenented using the emergency detector (Section 15.1)
introduced with the autonomous supervisor. There are many different types of
roads in terms of width, lane amount and different types of interesections. Such
intersection can have different ways to handle the right of way. One way would
be the same

”
right before left“ rule as in parking lots. Often there are road signs

indicating to give way and sometimes there are traffic lights. Detecting road
signs is already implemented in TurtleCar-Core, so adding more shouldn’t be
a huge challange. However, traffic lights could be more challanging, because a
computer vision approach would have to be researched and implemented. Lanes
might also merge into one or split into multiple. When lanes merge the vehicles
have to merge as well. Usually this done using zipper merge, which is a more

180

standard driving feature and should be easily implementable with the current
TurtleCar-Core workflow for developing controllers. Following the correct one
or understanding when to change the lane can be difficult. This is especially true
when trying to do autonomous navigation, which would be another enormous
undertaking in terms of work. In fact it would be considered to be another
project entirely. Thus the project groups determined that a realistic depection
of traffic in a city is at least the work of a new project group.

Extension to current scenario A smaller scenario which may only be cover
work of a thesis is an extention of the current autobahn scenario. The intro-
duction of a merge lane and an exit would require little updates to the already
existing environment and its assumption. The development of a zipper merge
controller should be the central challange of this extension. Here the vehicle
needs to perform a lane change, which is already possible in TurtleCar-Core.
However there is the challange that the lane to change to is occupied or will be
occupied by the time the vehicle reaches an acceptable speed to merge into the
autobahn. Now the vehicle has to decide on a strategy on how to still complete
the merge without driving past the merge lane into the emergency lane. It might
be possible to slow down a little to let one vehicle pass and merge behind that
vehicle or accelerate more to overtake that vehicle first and merge in front of
that vehicle. The decision process is then dependant on many factors such as
the length of the merge lane, the presence of other vehicles and their speed as
well as the ego vehicle ability to accelarate. This work can then be augmented
by extensive validation of the controller to ensure the quality of the controller.

20.2 TurtleCar-Test

TurtleCar-Test has been developed in two iteration with the second improving
everything the first was missing. During the analysis of features that should be
implemented into the second version some feature were brought up that were
deemed to be out of scope for that version. Generally these ideas are nice
to have, while being unnecessary for the core functionality of validating the
developed driving functions.

Traffic Sequence Charts One extension that has already been hinted at
in Section 13.1 is the adaption of TSCs. With this the definition of test-cases can
be made easier and possibly be used to verify aspects more formally. However,
this adaption would require a decent amount of work in terms of translating a
TSC to a python specification of a test-case. As already evaluated every aspect
described by a TSC is available in TurtleCar-Test. Thus it is possible to map a
TSC to a python specification that TurtleCar-Test can read and execute.

Replayability To capture more information about tests a replay and record
functionality could be build. This way anyone could record the run of a test
and see the results in a reproducable way. Since sensors are generally noisy and
don’t always measure the exact same values from the same starting position.
This could mean that a test failure is caused by inaccurate sensor data and
not because of a faulty driving funtion. To verify the cause of such a failure
recording of all sensor inputs and control outputs is necessary. Afterwards one

181

can replay the recording and see exactly what happened during the test run. It
should also be possible to only record the sensor inputs and see what kind of
control outputs are generated by a driving function when replaying the data.
This way a driving function can be developed while having simulated sensor
data, without having to start a test run. ROS already has a feature to record
and replay called ROS2 Bag. This feature has an API and could be called
directly from TurtleCar-Test. Thus only small asjustments have to be made
for recording a whole test run. A replay functionality requires more work as
TurtleCar-Test does not have this feature in mind. Instead of only being able
to read test specifications in the format of python source files, there would be a
need to read a ROSBag, which then can be replayed.

Test Generation During the development of driving function all test cases
have been written manually based on the requirements derived from the scenar-
ios. This is sufficient to validate that the driving functions developed throughout
the project group are performing in a desirable way. To still archieve a much
larger range of possible scenarios based on the initial one, there would be a need
to employ test generation. Using such generation one would be able to identifiy
edge cases and achieve s higher test coverage. As mentioned in Section 12.1
there are some different methods. Randomizing the initial position to a certain
extend is possible using TurtleCar-Test, however there is no strategy or result
collection and analysis like is necessary in fuzzy testing. Another possible way
to implement some kind of test generation is employing model-based testing.
TurtleCar-Test could then be given a model of the system under test and its
possible environment and generate test cases based on that.

Extending to the real-world Currently TurtleCar-Test is only used with a
simulated environemnt. However driving functions were implemented with the
intention of using them on the physical TB. This does not allow for automatic
validation in the real-world environment. Approaches for real-life testing have
already been discussed in Section 12.2.

20.3 TurtleCar-Core

Replacement for the Bicycle Model While the project group has found
the KBM to be sufficient to emulate real vehicles in a manner as stated in Chap-
ter 4, there were also some reasons given in Subsection 5.6.2 to replace the model
in other scenarios. To do that one could begin by taking a look at the dynamic
models discussed in Subsection 5.6.3 First, the usage of a DDM could be eval-
uated, and extensive quantitative tests conducted, where the performances of
the currently implemented controllers are compared. The experiments could
be as simple as running the driving functions with the KBM and a new DDM,
and comparing the result of these runs with a reference, like an optimal pre-
planned path. Measurements could be mean error and standard deviations to
the reference path.

Furthermore, experiments on slip angle could be conducted to answer ques-
tions such as: Is the TB subject to slip, and whether it is significant enough to
justify the usage of a dynamic vehicle model? If so, for mobile robots like the
TB that take velocity as an input command the development of a velocity-based

182

dynamic model can be considered. To add to that, exploring the viability of
the velocity-based dynamic vehicle model could offer valuable insights into the
TurtleCar platform’s limitations [60].

Sensors The TB is a platform that is build to be modular and extensible with
different sensors. Currently TurtleCar-Core has evaluators for the camera and
lidar as well as one for the basic functionality of platooning. This is enough to
provide all necessary information for the currently developed controllers. How-
ever there are sensors that can still be equipped to the TB. There are infrared
sensors that are already installed, but not used since their range and orientation
are not useful the project groups scenario. However these sensors would be use-
ful for more precise manoevering since they provide accurate measure for back
and side clearances. An example for such a scenario would be the previously
mentioned parking lot.

There is also a moisture sensor, which can be used to estimate the moisture
of the road. Here the idea is to model roads in different weather conditions,
which in turn forces controllers to handle the vehicle differently. In conditions
where the road is more slippery there is a need to be more careful with steering
the vehicle to avoid for example aquaplaning.

Another available sensor is a GPS sensor. This sensor has not been used in
the project group as its accuracy was not high enough for the scenarios. For
different use cases like navigation it may be possible to effectivly use GPS.

What is needed to do for all sensors is in addition to creating a sensor
evaluator in TurtleCar-Core is making the sensors output availabe via ROS.
This means working with low-level interfaces on the TB’s RaspberryPi and its
devices. This work that has been done by Robotis, the company behind the TB.
However even those are not bug-free as the project group found out and fixed
for the odometry.

Sensor Fusion See Section 6.3

Different Vehicle Configuration TurtleCar-Core is able to emulate differ-
ent vehicles as described in Section 5.3. Here only

”
standard“ passenger cars

have been considered. It would be interesting to use configuration for trucks,
which have very different dynamics. The much higher mass results in longer
accelaration time and higher braking distance. Controllers then have to take
this into account, because now there is a different safety distance, which means
keeping a bigger distance when using the ACC. Other minor difference in drag
should be negligable, because the controllers developed by the project group are
robust enough to deal with minor deviations.

183

184

Chapter 21

Conclusion

The goal of this project group was to develop and validate driving functions
based on the TB. To achieve this, the TurtleCar development and testing plat-
form was created. The development platform, TurtleCar Core, provides develop-
ers with a set of pre-defined methods allowing them to create driving functions,
such as lane and obstacle detection using multiple sensors, a state estimator for
the state of the vehicle, and a ready-to-use implementation of MPC. Using this
platform, it is then possible to run the controllers against the model of a real-
world car, which is emulated in a scaled-down version on the TB. The testing
platform provides a syntax to write tests in an intuitive, human-readable form,
which allows building tests for the driving functions implemented in TurtleCar
Core without the need to worry about implementation details.

Using these tools, vehicles with different levels of autonomy were imple-
mented for a scenario based on a German Autobahn. This required building
several assistance functions: A LKA, an ACC, a LCA and an OTA also ap-
plicable for avoiding static obstacles. Each assistance function was validated
using a set of test cases derived from the requirements. Using the assistance
function as building blocks, two variants of autonomous cars were implemented.
The autonomous cars decide on which speed to drive with and which driving
functions to activate based on interpretations of the environment. The Passive
Driver stays in its lane and drives behind slower cars, while the Maximum Speed
Driver overtakes slower obstacles if possible. Similar to the individual driving
functions, both autonomous drivers were validated using test cases derived from
their requirements.

One specific goal of the project group with regard to the autonomous drivers
was their ability to safely react to vehicles that were acting in violation of traffic
rules (rogue actors). The tests show that even if a rogue actor creates a situation
that is critical to the autonomous vehicle by braking sharply or pulling into their
lane, the autonomous drivers counteract this behavious safely by stopping before
a collision occurs or by changing the lane to avoid the rogue actor.

During the development of the TurtleCar platform and the driving func-
tions, two focus topics were identified to be crucial for the development process:
Providing a framework for MPC and the need to use an EKF to observe the
sensor input and compensate for inaccurate measurements. Similarly, in order
to provide the testers with an easier and more flexible way to test increasingly
complex driving functions, the testing framework underwent a rework during

185

the project.
By providing the driving functions and using them for the autonomous vehi-

cles, the project group reached its goal of providing various levels of autonomy
on the TBs. Their function can be reliably tested using the developed testing
platform. The resulting products offer many points where they can be extended
in the context of master theses or subsequent project groups.

186

Acronyms

Adaptive Cruise Control (ACC) . 2, 18, 84, 94, 101–103, 133–141, 147,
151, 153, 159, 160, 183, 185

ArUco (ArUco) This refers to a library for Augmented Reality applications
based on OpenCV. 72–76, 122

Degrees of Freedom (DOF) . 34

Differential Drive Model (DDM) . 33, 35, 36, 182

Extended Kalman Filter (EKF) . 41, 42, 45, 49, 76, 102, 185

Kalman Filter (KF) . 41, 45, 46

Kinematic Bicycle Model (KBM) . 25, 33–37, 182

Lane Change Assistant (LCA) . 77, 84, 112, 116, 121, 122, 141–147, 151,
159, 160, 185

Lane Change Assistant Interpreter (LCAI) . 112, 114, 116, 119–122, 151

Lane Keeping Assistant (LKA) . 2, 5, 84, 85, 102, 103, 125–133, 137, 141,
151, 159, 160, 175, 185

Mathematical Vehicle Model (MVM) . 7, 18, 25, 28, 33–36

Model Predictive Control (MPC) . 21, 51, 99, 103–108, 129–132, 144, 151,
159, 160, 185

Overtaking Assistant (OTA) . 103, 121–124, 147–153, 160, 185

Overtaking Assistant Interpreter (OTAI) . 121, 122, 151

Robot Operating System (ROS) This refers to ROS2 (Robot Operating
System 2). In version 2, specifications have been changed, which also in-
clude concrete implementation changes. The ROS2 version used is ROS2
Humble, which is marked as Long Term Support (LTS). 11, 39, 47, 48,
50, 52–54, 57, 72, 93, 95–97, 99, 100, 154–156, 182, 183

Traffic Sequence Chart (TSC) . 87, 88, 181

187

TurtleBot (TB) This refers to used TurtleBot’s within the project group. 1,
6, 7, 9, 13–19, 21, 25, 28, 34–36, 39–41, 43–45, 47, 48, 52–54, 62, 63, 67,
68, 71, 74, 84, 85, 87, 154, 180, 182, 183, 185, 186

188

Bibliography

[1] Andrew Alleyne. “A Comparison of Alternative Obstacle Avoidance Strate-
gies for Vehicle Control”. en. In: Vehicle System Dynamics 27.5-6 (June
1997), pp. 371–392. issn: 0042-3114, 1744-5159. doi: 10.1080/00423119708969337.
url: http://www.tandfonline.com/doi/abs/10.1080/00423119708969337
(visited on 03/17/2024).

[2] AprilRobotics. AprilTag: a visual fiducial system popular for robotics re-
search. 2023. url: https : / / github . com / AprilRobotics / apriltag

(visited on 12/15/2023).

[3] The Zenoh authors. Integrating ROS2 with Eclipse zenoh. Apr. 28, 2021.
url: https://zenoh.io/blog/2021-04-28-ros2-integration/.

[4] The Zenoh authors. Minimizing Discovery Overhead in ROS2. Mar. 23,
2021. url: https://zenoh.io/blog/2021-03-23-discovery/.

[5] The Zenoh authors. What is Zenoh? Mar. 9, 2024. url: https://zenoh.
io/docs/overview/what-is-zenoh/.

[6] Uli Baumann. Die Räder stehen fast quer. July 2022. url: https://

www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-

extrem-lenkung/ (visited on 10/08/2023).

[7] More BHP. VW MK7 Golf GT 2.0TDI 150 ECU Remap. url: https:
//www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-

20tdi-150-ecu-remap.html (visited on 10/08/2023).

[8] Black Python Formatter GitHub Repository. Oct. 2023. url: https://
github.com/psf/black (visited on 10/07/2023).

[9] Philipp Borchers et al. Realtime Controlled Cooperative Autonomous Rac-
ing System next generation. Checked 2023-10-05. Apr. 2018. url: https:
//uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.

pdf (visited on 10/08/2023).

[10] Paolo Bosetti, Mauro Lio, and Andrea Saroldi. “On the human control of
vehicles: An experimental study of acceleration”. In: European Transport
Research Review 6 (Sept. 2013). doi: 10.1007/s12544-013-0120-2.

[11] Nikolai Bräuer et al. Realtime Controlled Cooperative Autonomous Racing
System. Nov. 2016. url: https://uol.de/f/2/dept/informatik/

download/studium/pg/PG_RCCARS.pdf (visited on 10/05/2023).

[12] Bremsen. url: https : / / vorschriften . bgn - branchenwissen . de /

daten/dguv/70/19.htm (visited on 10/08/2023).

189

https://doi.org/10.1080/00423119708969337
http://www.tandfonline.com/doi/abs/10.1080/00423119708969337
https://github.com/AprilRobotics/apriltag
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-03-23-discovery/
https://zenoh.io/docs/overview/what-is-zenoh/
https://zenoh.io/docs/overview/what-is-zenoh/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.auto-motor-und-sport.de/tech-zukunft/zf-easyturn-achse-extrem-lenkung/
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://www.more-bhp.com/volkswagen-golf-remapping/vw-mk7-golf-gt-20tdi-150-ecu-remap.html
https://github.com/psf/black
https://github.com/psf/black
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/lehre/PGs/PG-RCCARS.pdf
https://doi.org/10.1007/s12544-013-0120-2
https://uol.de/f/2/dept/informatik/download/studium/pg/PG_RCCARS.pdf
https://uol.de/f/2/dept/informatik/download/studium/pg/PG_RCCARS.pdf
https://vorschriften.bgn-branchenwissen.de/daten/dguv/70/19.htm
https://vorschriften.bgn-branchenwissen.de/daten/dguv/70/19.htm

[13] Bremswege im Vergleich. Oct. 2019. url: https://www.adac.de/rund-
ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/ (visited
on 10/08/2023).

[14] Bundesrepublik Deutschland. Straßenverkehrsordnung. 2013. url: https:
//www.gesetze-im-internet.de/stvo_2013/ (visited on 10/08/2023).

[15] cfzd. Ultra-Fast-Lane-Detection. 2020. url: https://github.com/cfzd/
Ultra-Fast-Lane-Detection.

[16] cfzd. Ultra-Fast-Lane-Detection-V2. 2022. url: https://github.com/
cfzd/Ultra-Fast-Lane-Detection-v2.

[17] Rüdiger Cordes. cw-Werte. 2022. url: http://rc.opelgt.org/indexcw.
php (visited on 10/08/2023).

[18] Angelo Corsaro et al. “Zenoh: Unifying Communication, Storage and
Computation from the Cloud to the Microcontroller”. In: DSD 2023 (Sept.
2023).

[19] Werner Damm et al. Traffic Sequence Charts - From Visualization to Se-
mantics. Tech. rep. Oct. 2017. url: http://www.avacs.org/fileadmin/
Publikationen/Open/avacs_technical_report_117.pdf.

[20] Celso De La Cruz and Ricardo Carelli. “Dynamic model based formation
control and obstacle avoidance of multi-robot systems”. en. In: Robot-
ica 26.3 (May 2008), pp. 345–356. issn: 0263-5747, 1469-8668. doi: 10.
1017/S0263574707004092. url: https://www.cambridge.org/core/
product / identifier / S0263574707004092 / type / journal _ article

(visited on 03/15/2024).

[21] DQ381 DSG gear ratios? url: https://www.golfmk7.com/forums/

index.php?threads/dq381- dsg- gear- ratios.360005/ (visited on
04/03/2024).

[22] DSG Shift Time. June 2007. url: https://www.vwvortex.com/threads/
dsg-shift-time.3311040/ (visited on 10/08/2023).

[23] PG EmBrAAC. Projektgruppe Emergency Braking Assistant for fully Au-
tonomous Cars. Sept. 2019.

[24] Azim Eskandarian, ed. Handbook of Intelligent Vehicles. en. London: Springer
London, 2012. isbn: 9780857290847 9780857290854. doi: 10.1007/978-
0-85729-085-4. url: http://link.springer.com/10.1007/978-0-
85729-085-4 (visited on 03/13/2024).

[25] Nikolay Falaleev. Bird’s Eye View Transformation. url: https://nikolasent.
github.io/opencv/2017/05/07/Bird’s-Eye-View-Transformation.

html (visited on 05/07/2017).

[26] Brian Fitzgerald and Klaas-Jan Stol. “Continuous software engineering:
A roadmap and agenda”. en. In: Journal of Systems and Software 123
(Jan. 2017), pp. 176–189. issn: 01641212. doi: 10.1016/j.jss.2015.
06.063. url: https://linkinghub.elsevier.com/retrieve/pii/

S0164121215001430 (visited on 10/07/2023).

[27] ROS 2 Real-Time Working Group. Raspberry Pi image with ROS 2 and the
real-time kernel. 2023. url: https://github.com/ros-realtime/ros-
realtime-rpi4-image (visited on 10/04/2023).

190

https://www.adac.de/rund-ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/
https://www.adac.de/rund-ums-fahrzeug/autokatalog/autotest/bremswege-vergleich/
https://www.gesetze-im-internet.de/stvo_2013/
https://www.gesetze-im-internet.de/stvo_2013/
https://github.com/cfzd/Ultra-Fast-Lane-Detection
https://github.com/cfzd/Ultra-Fast-Lane-Detection
https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2
https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2
http://rc.opelgt.org/indexcw.php
http://rc.opelgt.org/indexcw.php
http://www.avacs.org/fileadmin/Publikationen/Open/avacs_technical_report_117.pdf
http://www.avacs.org/fileadmin/Publikationen/Open/avacs_technical_report_117.pdf
https://doi.org/10.1017/S0263574707004092
https://doi.org/10.1017/S0263574707004092
https://www.cambridge.org/core/product/identifier/S0263574707004092/type/journal_article
https://www.cambridge.org/core/product/identifier/S0263574707004092/type/journal_article
https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-gear-ratios.360005/
https://www.golfmk7.com/forums/index.php?threads/dq381-dsg-gear-ratios.360005/
https://www.vwvortex.com/threads/dsg-shift-time.3311040/
https://www.vwvortex.com/threads/dsg-shift-time.3311040/
https://doi.org/10.1007/978-0-85729-085-4
https://doi.org/10.1007/978-0-85729-085-4
http://link.springer.com/10.1007/978-0-85729-085-4
http://link.springer.com/10.1007/978-0-85729-085-4
https://nikolasent.github.io/opencv/2017/05/07/Bird's-Eye-View-Transformation.html
https://nikolasent.github.io/opencv/2017/05/07/Bird's-Eye-View-Transformation.html
https://nikolasent.github.io/opencv/2017/05/07/Bird's-Eye-View-Transformation.html
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
https://github.com/ros-realtime/ros-realtime-rpi4-image
https://github.com/ros-realtime/ros-realtime-rpi4-image

[28] Gurobi Optimization LLC. Python API Overview - Gurobi Optimiza-
tion. 2022. url: https://www.gurobi.com/documentation/current/
refman/py_python_api_overview.html (visited on 11/23/2023).

[29] HarunTeper. Autonomous Navigation System Simulator. Dec. 2023. url:
https://github.com/HarunTeper/AuNa.

[30] ibaiGorordo. onnx-Ultra-Fast-Lane-Detection-Inference. 2022. url: https:
//github.com/ibaiGorordo/onnx- Ultra- Fast- Lane- Detection-

Inference.

[31] International Organization for Standardization. Intelligent transport sys-
tems — Lanekeeping assistance systems (LKAS) —Performance require-
ments and testprocedures. Tech. rep. 2014. url: https://www.iso.org/
obp/ui/en/#iso:std:iso:11270:ed-1:v1:en (visited on 10/08/2023).

[32] PG iTraffic. TurtleBot. 2024. url: https://gitlab.itraffic-uol.de/
itraffic/turtlebot (visited on 04/03/2023).

[33] PG iTraffic. TurtleBot 3 Image Builder. 2023. url: https://gitlab.
itraffic-uol.de/itraffic/TurtleBot3-image-builder (visited on
10/04/2023).

[34] Philipp Fritz Jaß. Spezifikation und Implementierung einer Platooning
Funktion auf Basis der CeCar-Plattform. Nov. 24, 2020. url: https :

//www.ifaf-berlin.de/media/Masterarbeit_Philipp_Jass.pdf.

[35] Jens Jauch et al. “Recursive B-spline approximation using the Kalman
filter”. In: Engineering Science and Technology, an International Journal
20.1 (2017), pp. 28–34. issn: 2215-0986. doi: https://doi.org/10.

1016/j.jestch.2016.09.015. url: https://www.sciencedirect.com/
science/article/pii/S2215098616303032.

[36] Li Kai Chun. Vehicle-CV-ADAS. 2023. url: https : / / github . com /

jason-li-831202/Vehicle-CV-ADAS.

[37] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Prob-
lems”. en. In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45.
issn: 0021-9223. doi: 10.1115/1.3662552. url: https://asmedigitalcollection.
asme.org/fluidsengineering/article/82/1/35/397706/A- New-

Approach-to-Linear-Filtering-and-Prediction (visited on 03/09/2024).

[38] Chang Mook Kang, Seung-Hi Lee, and Chung Choo Chung. “Compara-
tive evaluation of dynamic and kinematic vehicle models”. In: 53rd IEEE
Conference on Decision and Control. Los Angeles, CA, USA: IEEE, Dec.
2014, pp. 648–653. isbn: 978-1-4673-6090-6 978-1-4799-7746-8 978-1-4799-
7745-1. doi: 10.1109/CDC.2014.7039455. url: http://ieeexplore.
ieee.org/document/7039455/ (visited on 03/13/2024).

[39] kemfic. Curved Lane Detection. url: https://www.hackster.io/kemfic/
curved-lane-detection-34f771 (visited on 05/24/2018).

[40] KIA Motors. Kia EV6 Manual. Oct. 2023. url: https://www.kia.com/
content/dam/kia2/in/en/content/ev6-manual/index.html (visited
on 10/28/2023).

191

https://www.gurobi.com/documentation/current/refman/py_python_api_overview.html
https://www.gurobi.com/documentation/current/refman/py_python_api_overview.html
https://github.com/HarunTeper/AuNa
https://github.com/ibaiGorordo/onnx-Ultra-Fast-Lane-Detection-Inference
https://github.com/ibaiGorordo/onnx-Ultra-Fast-Lane-Detection-Inference
https://github.com/ibaiGorordo/onnx-Ultra-Fast-Lane-Detection-Inference
https://www.iso.org/obp/ui/en/#iso:std:iso:11270:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:11270:ed-1:v1:en
https://gitlab.itraffic-uol.de/itraffic/turtlebot
https://gitlab.itraffic-uol.de/itraffic/turtlebot
https://gitlab.itraffic-uol.de/itraffic/TurtleBot3-image-builder
https://gitlab.itraffic-uol.de/itraffic/TurtleBot3-image-builder
https://www.ifaf-berlin.de/media/Masterarbeit_Philipp_Jass.pdf
https://www.ifaf-berlin.de/media/Masterarbeit_Philipp_Jass.pdf
https://doi.org/https://doi.org/10.1016/j.jestch.2016.09.015
https://doi.org/https://doi.org/10.1016/j.jestch.2016.09.015
https://www.sciencedirect.com/science/article/pii/S2215098616303032
https://www.sciencedirect.com/science/article/pii/S2215098616303032
https://github.com/jason-li-831202/Vehicle-CV-ADAS
https://github.com/jason-li-831202/Vehicle-CV-ADAS
https://doi.org/10.1115/1.3662552
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://doi.org/10.1109/CDC.2014.7039455
http://ieeexplore.ieee.org/document/7039455/
http://ieeexplore.ieee.org/document/7039455/
https://www.hackster.io/kemfic/curved-lane-detection-34f771
https://www.hackster.io/kemfic/curved-lane-detection-34f771
https://www.kia.com/content/dam/kia2/in/en/content/ev6-manual/index.html
https://www.kia.com/content/dam/kia2/in/en/content/ev6-manual/index.html

[41] Jason Kong et al. “Kinematic and dynamic vehicle models for autonomous
driving control design”. In: 2015 IEEE Intelligent Vehicles Symposium
(IV). ISSN: 1931-0587. June 2015, pp. 1094–1099. doi: 10.1109/IVS.
2015.7225830. url: https://ieeexplore.ieee.org/abstract/document/
7225830 (visited on 03/15/2024).

[42] Kraftfahrtbundesamt. Monatliche Neuzulassungen September 2022. url:
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/

MonatlicheNeuzulassungen/monatl_neuzulassungen_node.html?yearFilter=

2022&monthFilter=09_september (visited on 05/11/2023).

[43] Holger Krekel. pytest Documentation. docs.pytest.org, Oct. 2023. url:
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/

pytest.pdf (visited on 10/04/2023).

[44] Janis Kröger. “Optimierung und Erweiterung einer bestehenden mod-
ellprädiktiven Regelung zur Durchführung dynamischer Überholmanöver
in einem autonomen Rennbetrieb”. MA thesis. Carl von Ossietzky Uni-
versität Oldenburg, 2019.

[45] Roger Labbe. Kalman-and-Bayesian-Filters-in-Python. https://github.
com/rlabbe/Kalman-and-Bayesian-Filters-in-Python. 2024.

[46] Allan Y. Lee. “Performance of Four-Wheel-Steering Vehicles in Lane Change
Maneuvers”. en. In: Feb. 1995, p. 950316. doi: 10.4271/950316. url:
https://www.sae.org/content/950316/ (visited on 03/17/2024).

[47] Junyung Lee et al. “Design of a Strategy for Lane Change Assistance Sys-
tem”. en. In: IFAC Proceedings Volumes 46.21 (2013), pp. 762–767. issn:
14746670. doi: 10.3182/20130904- 4- JP- 2042.00134. url: https:

//linkinghub.elsevier.com/retrieve/pii/S147466701638466X (vis-
ited on 02/21/2024).

[48] William Levison et al. Development of a Driver Vehicle Module (DVM)
for the Interactive Highway Safety Design Model (IHSDM). Nov. 2007.
doi: 10.13140/RG.2.2.35982.05446.

[49] M. Likhita et al. “Obstacle Detection in Autonomous Vehicles Using 3D
LiDAR Point Cloud Data”. In: Data Intelligence and Cognitive Informat-
ics. Ed. by I. Jeena Jacob, Selvanayaki Kolandapalayam Shanmugam, and
Robert Bestak. Singapore: Springer Nature Singapore, 2022, pp. 745–757.
isbn: 978-981-16-6460-1.

[50] King Hann Lim, Kah Seng, and Li-Minn Ang. “River Flow Lane Detection
and Kalman Filtering-Based B-Spline Lane Tracking”. In: International
Journal of Vehicular Technology 2012 (Nov. 2012). doi: 10.1155/2012/
465819.

[51] Fernando Macedo et al. Python StateMachine. 2023. url: https : / /

python-statemachine.readthedocs.io/ (visited on 02/24/2024).

[52] Steven Macenski et al. “Robot Operating System 2: Design, architecture,
and uses in the wild”. In: Science Robotics 7.66 (May 2022). issn: 2470-
9476. doi: 10.1126/scirobotics.abm6074. url: http://dx.doi.org/
10.1126/scirobotics.abm6074.

[53] Baurzhan Muftakhidinov Mark Mitchell and Tobias Winchen et al. En-
gauge Digitizer Software. url: http://markummitchell.github.io/

engauge-digitizer (visited on 10/08/2023).

192

https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1109/IVS.2015.7225830
https://ieeexplore.ieee.org/abstract/document/7225830
https://ieeexplore.ieee.org/abstract/document/7225830
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/MonatlicheNeuzulassungen/monatl_neuzulassungen_node.html?yearFilter=2022&monthFilter=09_september
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/MonatlicheNeuzulassungen/monatl_neuzulassungen_node.html?yearFilter=2022&monthFilter=09_september
https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/MonatlicheNeuzulassungen/monatl_neuzulassungen_node.html?yearFilter=2022&monthFilter=09_september
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://doi.org/10.4271/950316
https://www.sae.org/content/950316/
https://doi.org/10.3182/20130904-4-JP-2042.00134
https://linkinghub.elsevier.com/retrieve/pii/S147466701638466X
https://linkinghub.elsevier.com/retrieve/pii/S147466701638466X
https://doi.org/10.13140/RG.2.2.35982.05446
https://doi.org/10.1155/2012/465819
https://doi.org/10.1155/2012/465819
https://python-statemachine.readthedocs.io/
https://python-statemachine.readthedocs.io/
https://doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1126/scirobotics.abm6074
http://markummitchell.github.io/engauge-digitizer
http://markummitchell.github.io/engauge-digitizer

[54] Felipe N. Martins, Mário Sarcinelli-Filho, and Ricardo Carelli. “A Velocity-
Based Dynamic Model and Its Properties for Differential Drive Mobile
Robots”. en. In: Journal of Intelligent & Robotic Systems 85.2 (Feb. 2017),
pp. 277–292. issn: 0921-0296, 1573-0409. doi: 10.1007/s10846- 016-

0381-9. url: http://link.springer.com/10.1007/s10846-016-0381-
9 (visited on 03/13/2024).

[55] MathWorks. Quadratic Programming - MATLAB quadprog. 2023. url:
https://de.mathworks.com/help/optim/ug/quadprog.html (visited
on 12/06/2023).

[56] Keonhee Min and Akira Ando. “Analysis on Characteristics of Dangerous
Driving Events via Recorded Data of Drive-Recorder”. In: Transportation
Research Procedia 48 (2020). Recent Advances and Emerging Issues in
Transport Research – An Editorial Note for the Selected Proceedings of
WCTR 2019 Mumbai, pp. 1342–1363. issn: 2352-1465. doi: https://

doi.org/10.1016/j.trpro.2020.08.164.

[57] Lesia Mochurad, Yaroslav Hladun, and Roman Tkachenko. “An Obstacle-
Finding Approach for Autonomous Mobile Robots Using 2D LiDAR Data”.
In: Big Data Cogn. Comput. 7.1 (2023), p. 43. doi: 10.3390/BDCC7010043.
url: https://doi.org/10.3390/bdcc7010043.

[58] mockito-python GitHub Repository. Oct. 2023. url: https://github.
com/kaste/mockito-python (visited on 10/04/2023).

[59] Akos Nagy, Gabor Csorvasi, and Domokos Kiss. “Path planning and
control of differential and car-like robots in narrow environments”. en.
In: 2015 IEEE 13th International Symposium on Applied Machine In-
telligence and Informatics (SAMI). Herl’any, Slovakia: IEEE, Jan. 2015,
pp. 103–108. isbn: 978-1-4799-8221-9. doi: 10.1109/SAMI.2015.7061856.
url: http://ieeexplore.ieee.org/document/7061856/ (visited on
03/15/2024).

[60] Felipe Nascimento Martins and Alexandre Santos Brandão. “Motion Con-
trol and Velocity-Based Dynamic Compensation for Mobile Robots”. en.
In: Applications of Mobile Robots. Ed. by Efren Gorrostieta Hurtado. In-
techOpen, Mar. 2019. isbn: 978-1-78985-755-9 978-1-78985-756-6. doi:
10.5772/intechopen.79397. url: https://www.intechopen.com/

books / applications - of - mobile - robots / motion - control - and -

velocity- based- dynamic- compensation- for- mobile- robots (vis-
ited on 03/16/2024).

[61] OpenCV. ArUco marker detection. 2023. url: https://docs.opencv.
org/4.x/d9/d6d/tutorial_table_of_content_aruco.html (visited on
12/15/2023).

[62] Yan Peng et al. “The obstacle detection and obstacle avoidance algorithm
based on 2-D lidar”. In: IEEE International Conference on Information
and Automation, ICIA 2015, Lijiang, China, August 8-10, 2015. IEEE,
2015, pp. 1648–1653. doi: 10.1109/ICINFA.2015.7279550. url: https:
//doi.org/10.1109/ICInfA.2015.7279550.

193

https://doi.org/10.1007/s10846-016-0381-9
https://doi.org/10.1007/s10846-016-0381-9
http://link.springer.com/10.1007/s10846-016-0381-9
http://link.springer.com/10.1007/s10846-016-0381-9
https://de.mathworks.com/help/optim/ug/quadprog.html
https://doi.org/https://doi.org/10.1016/j.trpro.2020.08.164
https://doi.org/https://doi.org/10.1016/j.trpro.2020.08.164
https://doi.org/10.3390/BDCC7010043
https://doi.org/10.3390/bdcc7010043
https://github.com/kaste/mockito-python
https://github.com/kaste/mockito-python
https://doi.org/10.1109/SAMI.2015.7061856
http://ieeexplore.ieee.org/document/7061856/
https://doi.org/10.5772/intechopen.79397
https://www.intechopen.com/books/applications-of-mobile-robots/motion-control-and-velocity-based-dynamic-compensation-for-mobile-robots
https://www.intechopen.com/books/applications-of-mobile-robots/motion-control-and-velocity-based-dynamic-compensation-for-mobile-robots
https://www.intechopen.com/books/applications-of-mobile-robots/motion-control-and-velocity-based-dynamic-compensation-for-mobile-robots
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html
https://doi.org/10.1109/ICINFA.2015.7279550
https://doi.org/10.1109/ICInfA.2015.7279550
https://doi.org/10.1109/ICInfA.2015.7279550

[63] Quang-Cuong Pham. “Trajectory Planning”. en. In: Handbook of Manu-
facturing Engineering and Technology. Ed. by Andrew Y. C. Nee. Lon-
don: Springer London, 2015, pp. 1873–1887. isbn: 978-1-4471-4669-8 978-
1-4471-4670-4. doi: 10.1007/978- 1- 4471- 4670- 4_92. url: https:
//link.springer.com/10.1007/978-1-4471-4670-4_92 (visited on
10/04/2023).

[64] PINTO0309. PINTO Model Zoo. 2023. url: https : / / github . com /

PINTO0309/PINTO_model_zoo/tree/main/324_Ultra- Fast- Lane-

Detection-v2.

[65] Joshwa Pohlmann et al. “ROS2-based Small-Scale Development Platform
for CCAM Research Demonstrators”. In: 2022 IEEE 95th Vehicular Tech-
nology Conference: (VTC2022-Spring). 2022 IEEE 95th Vehicular Tech-
nology Conference (VTC2022-Spring). Helsinki, Finland: IEEE, June 2022,
pp. 1–6. isbn: 978-1-66548-243-1. doi: 10.1109/VTC2022-Spring54318.
2022.9860981. url: https://ieeexplore.ieee.org/document/9860981/
(visited on 12/25/2023).

[66] Philip Polack et al. “The kinematic bicycle model: A consistent model for
planning feasible trajectories for autonomous vehicles?” In: 2017 IEEE
Intelligent Vehicles Symposium (IV). 2017, pp. 812–818. doi: 10.1109/
IVS.2017.7995816.

[67] Philip Polack et al. “The kinematic bicycle model: A consistent model for
planning feasible trajectories for autonomous vehicles?” In: 2017 IEEE
Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA: IEEE, June
2017, pp. 812–818. isbn: 978-1-5090-4804-5. doi: 10.1109/IVS.2017.
7995816. url: http : / / ieeexplore . ieee . org / document / 7995816/

(visited on 03/13/2024).

[68] Zequn Qin, Huanyu Wang, and Xi Li. Ultra Fast Structure-aware Deep
Lane Detection. 2020.

[69] Zequn Qin, Pengyi Zhang, and Xi Li. “Ultra Fast Deep Lane Detection
With Hybrid Anchor Driven Ordinal Classification”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2022), pp. 1–14. doi:
10.1109/TPAMI.2022.3182097.

[70] Raspberry Pi - Camera 3. url: https://www.raspberrypi.com/products/
camera-module-3/ (visited on 04/01/2024).

[71] Raspberry Pi 4 Model B. url: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/ (visited on 04/01/2024).

[72] Robert Bosch GmbH. Lane Keeping Assist. 2023. url: https://www.
bosch - mobility . com / en / solutions / assistance - systems / lane -

keeping-assist/ (visited on 10/31/2023).

[73] Robotis. Robotis TurtleBot 3 e-Manual Chapter Two. Online. Nov. 2023.
url: https://emanual.robotis.com/docs/en/platform/turtlebot3/
features/.

[74] Ruff Python Linter GitHub Repository. Oct. 2023. url: https://github.
com/astral-sh/ruff (visited on 10/07/2023).

194

https://doi.org/10.1007/978-1-4471-4670-4_92
https://link.springer.com/10.1007/978-1-4471-4670-4_92
https://link.springer.com/10.1007/978-1-4471-4670-4_92
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/324_Ultra-Fast-Lane-Detection-v2
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/324_Ultra-Fast-Lane-Detection-v2
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/324_Ultra-Fast-Lane-Detection-v2
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860981
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860981
https://ieeexplore.ieee.org/document/9860981/
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
http://ieeexplore.ieee.org/document/7995816/
https://doi.org/10.1109/TPAMI.2022.3182097
https://www.raspberrypi.com/products/camera-module-3/
https://www.raspberrypi.com/products/camera-module-3/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.bosch-mobility.com/en/solutions/assistance-systems/lane-keeping-assist/
https://www.bosch-mobility.com/en/solutions/assistance-systems/lane-keeping-assist/
https://www.bosch-mobility.com/en/solutions/assistance-systems/lane-keeping-assist/
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://github.com/astral-sh/ruff
https://github.com/astral-sh/ruff

[75] J.Z. Sasiadek. “Sensor fusion”. In: Annual Reviews in Control 26.2 (2002),
pp. 203–228. issn: 1367-5788. doi: https://doi.org/10.1016/S1367-
5788(02)00045-7. url: https://www.sciencedirect.com/science/
article/pii/S1367578802000457.

[76] Dieter Schramm, Manfred Hiller, and Roberto Bardini. Vehicle Dynamics.
en. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. isbn: 978-3-662-
54482-2 978-3-662-54483-9. doi: 10.1007/978-3- 662-54483- 9. url:
http://link.springer.com/10.1007/978-3-662-54483-9 (visited on
03/13/2024).

[77] Scrum.org. What is Scrum? 2023. url: https : / / www . scrum . org /

learning-series/what-is-scrum (visited on 10/08/2023).

[78] Rahul Sharma K., Daniel Honc, and Frantisek Dusek. “Predictive Con-
trol Of Differential Drive Mobile Robot Considering Dynamics And Kine-
matics”. en. In: ECMS 2016 Proceedings edited by Thorsten Claus, Frank
Herrmann, Michael Manitz, Oliver Rose. ECMS, June 2016, pp. 354–360.
isbn: 978-0-9932440-2-5. doi: 10.7148/2016-0354. url: http://www.
scs-europe.net/dlib/2016/2016-0354.htm (visited on 03/13/2024).

[79] Shift points on Mk7 TDI manual? url: https://forums.tdiclub.com/
index.php?threads/shift- points- on- mk7- tdi- manual.431653/

(visited on 04/03/2024).

[80] Micha l Siwek et al. “Identification of Differential Drive Robot Dynamic
Model Parameters”. en. In: Materials 16.2 (Jan. 2023), p. 683. issn: 1996-
1944. doi: 10.3390/ma16020683. url: https://www.mdpi.com/1996-
1944/16/2/683 (visited on 03/13/2024).

[81] Riikka Soitinaho, Marcel Moll, and Timo Oksanen. “2D LiDAR based ob-
ject detection and tracking on a moving vehicle”. In: IFAC-PapersOnLine
55.32 (2022). 7th IFAC Conference on Sensing, Control and Automa-
tion Technologies for Agriculture AGRICONTROL 2022, pp. 66–71. issn:
2405-8963. doi: https:// doi.org/10.1016 /j.ifacol.2022. 11.

116. url: https://www.sciencedirect.com/science/article/pii/
S2405896322027495.

[82] Qunying Song, Emelie Engström, and Per Runeson. “Concepts in Testing
of Autonomous Systems: Academic Literature and Industry Practice”. In:
2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering
for AI (WAIN). 2021, pp. 74–81. doi: 10.1109/WAIN52551.2021.00018.

[83] Manideep Sridhara. TuSimple - Ace the Lane Detection Challenge. 2021.
url: https://www.kaggle.com/datasets/manideep1108/tusimple.

[84] Anthony Stark. Vehicle acceleration and maximum speed modeling and
simulation. 2022. url: https://x-engineer.org/vehicle-acceleration-
maximum-speed-modeling-simulation/ (visited on 11/16/2023).

[85] Forschungsgesellschaft für Straßen- und Verkehrswesen, ed. Richtlinien
für die Markierung von Straßen. Teil A: Autobahnen. ger. Ausgabe 2019.
FGSV 330A. Cologne: Forschungsgesellschaft für Straßen- und Verkehr-
swesen e.V, 2019. isbn: 978-3-86446-251-1.

[86] Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles. Apr. 2021. url: https://www.sae.
org/standards/content/j3016_202104/ (visited on 10/05/2023).

195

https://doi.org/https://doi.org/10.1016/S1367-5788(02)00045-7
https://doi.org/https://doi.org/10.1016/S1367-5788(02)00045-7
https://www.sciencedirect.com/science/article/pii/S1367578802000457
https://www.sciencedirect.com/science/article/pii/S1367578802000457
https://doi.org/10.1007/978-3-662-54483-9
http://link.springer.com/10.1007/978-3-662-54483-9
https://www.scrum.org/learning-series/what-is-scrum
https://www.scrum.org/learning-series/what-is-scrum
https://doi.org/10.7148/2016-0354
http://www.scs-europe.net/dlib/2016/2016-0354.htm
http://www.scs-europe.net/dlib/2016/2016-0354.htm
https://forums.tdiclub.com/index.php?threads/shift-points-on-mk7-tdi-manual.431653/
https://forums.tdiclub.com/index.php?threads/shift-points-on-mk7-tdi-manual.431653/
https://doi.org/10.3390/ma16020683
https://www.mdpi.com/1996-1944/16/2/683
https://www.mdpi.com/1996-1944/16/2/683
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.11.116
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.11.116
https://www.sciencedirect.com/science/article/pii/S2405896322027495
https://www.sciencedirect.com/science/article/pii/S2405896322027495
https://doi.org/10.1109/WAIN52551.2021.00018
https://www.kaggle.com/datasets/manideep1108/tusimple
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/

[87] Technische Daten aller VW Golf 7 Modelle. url: https://carwiki.de/
vw-golf-7-technische-daten/ (visited on 04/03/2024).

[88] Tino Teige et al. “Two Decades of Formal Methods in Industrial Products
at BTC Embedded Systems”. In: Formal Methods. Ed. by Marieke Huis-
man, Corina Păsăreanu, and Naijun Zhan. Cham: Springer International
Publishing, 2021, pp. 725–729. isbn: 978-3-030-90870-6.

[89] The 25 Top Causes of Car Accidents in the US. Jan. 9, 2024. url: https:
//web.archive.org/web/20240229163317/https://seriousaccidents.

com/legal-advice/top-causes-of-car-accidents/.

[90] The Robotis authors. LDS-02. url: https://emanual.robotis.com/
docs/en/platform/turtlebot3/appendix_lds_02/ (visited on 04/01/2024).

[91] The Robotis authors. OpenCR 1.0. url: https://emanual.robotis.
com/docs/en/parts/controller/opencr10/ (visited on 04/01/2024).

[92] Tire and Wheel Plus Sizing - Tire Size Calculator. url: https://www.
1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&

ismetric=true (visited on 04/03/2024).

[93] TurtleBot3. url: https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/ (visited on 04/01/2024).

[94] Vehicle acceleration and maximum speed modeling and simulation. url:
https://x-engineer.org/vehicle-acceleration-maximum-speed-

modeling-simulation/ (visited on 10/08/2023).

[95] Guojun Wang et al. “A Comprehensive Testing and Evaluation Approach
for Autonomous Vehicles”. In: WCX World Congress Experience. SAE
International, Apr. 2018. doi: https://doi.org/10.4271/2018-01-
0124. url: https://doi.org/10.4271/2018-01-0124.

[96] Nathan Wies. Multicast over Wireless. May 2, 2019. url: https : / /

wirelesslywired.com/2019/05/02/multicast-over-wireless/.

[97] Lukas Wunderli. MPC based Trajectory Tracking for 1:43 scale Race Cars.
Tech. rep. Automatic Control Laboratory (IfA), Swiss Federal Institute of
Technology (ETH) Zurich, Apr. 2011.

[98] Gao Zhenhai et al. “Multi-argument Control Mode Switching Strategy for
Adaptive Cruise Control System”. In: Procedia Engineering 137 (2016).
Green Intelligent Transportation System and Safety, pp. 581–589. issn:
1877-7058. doi: https:// doi.org/10.1016 /j.proeng.2016 .01.

295. url: https://www.sciencedirect.com/science/article/pii/
S1877705816003222.

196

https://carwiki.de/vw-golf-7-technische-daten/
https://carwiki.de/vw-golf-7-technische-daten/
https://web.archive.org/web/20240229163317/https://seriousaccidents.com/legal-advice/top-causes-of-car-accidents/
https://web.archive.org/web/20240229163317/https://seriousaccidents.com/legal-advice/top-causes-of-car-accidents/
https://web.archive.org/web/20240229163317/https://seriousaccidents.com/legal-advice/top-causes-of-car-accidents/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/parts/controller/opencr10/
https://emanual.robotis.com/docs/en/parts/controller/opencr10/
https://www.1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&ismetric=true
https://www.1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&ismetric=true
https://www.1010tires.com/Tools/Tire-Size-Calculator/205-55R16?active=0&ismetric=true
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/
https://x-engineer.org/vehicle-acceleration-maximum-speed-modeling-simulation/
https://doi.org/https://doi.org/10.4271/2018-01-0124
https://doi.org/https://doi.org/10.4271/2018-01-0124
https://doi.org/10.4271/2018-01-0124
https://wirelesslywired.com/2019/05/02/multicast-over-wireless/
https://wirelesslywired.com/2019/05/02/multicast-over-wireless/
https://doi.org/https://doi.org/10.1016/j.proeng.2016.01.295
https://doi.org/https://doi.org/10.1016/j.proeng.2016.01.295
https://www.sciencedirect.com/science/article/pii/S1877705816003222
https://www.sciencedirect.com/science/article/pii/S1877705816003222

	Product Vision
	Autonomy Levels
	Functions of the Non-Autonomous Vehicle
	Functions of the Partially Automated Vehicle
	Functions of the Highly Automated Vehicle

	State of the Art
	Levels of Automotive Autonomy
	Related Projects

	Used Software and Hardware
	TurtleBot3
	Additional Sensors
	GPS Sensor
	Compass
	Temperature Sensor

	Gazebo
	ROS 2

	Reflecting Reality
	Real Environment
	TurtleBot 3 Burger
	Golf VII
	Road Model

	Scaling Approaches
	Settling on a Strategy
	Disadvantages of the Chosen Strategy

	Scaling Reality
	Resulting Environment
	Using the Scaling in the TurtleCar-Software

	Differences between Gazebo and Reality
	Terms of Safety
	Front Back Clearance
	Lateral Clearance
	Guidelines for the vehicle

	Vehicle Emulation
	Idealized Mathematical Vehicle Model
	Emulated Mathematical Vehicle Model
	Motor Model
	Steering Angle Limiting

	Vehicle Configuration
	Structure
	Examples
	Considered Mathematical Vehicle Models
	Kinematic Bicycle Model in the Field of Mathematical Vehicle Models
	Reasons for Choosing the Kinematic Bicycle Model
	Discussion of other Vehicle Models
	Possible Reasons for Choosing other Models than the Kinematic Bicycle Model
	Answering the Research Questions

	Sensor Augmentations
	Camera
	Camera Service
	Camera Mount

	Kalman Filter
	Sensor Fusion

	TurtleCar-Core
	TurtleCar Node
	Architecture
	TurtleCarNode Core Loop
	Filtering Sensor Values
	Unit Testing

	TurtleCar-Core Coordinate System
	Local Coordinate System
	Global Coordinate System

	TurtleBot ROS2 Image
	TurtleBot ROS2 packages
	TurtleBot Bringup
	ROS2 WiFi network with TurtleBots

	Code Quality
	SCA
	Development Tools
	Continuous Integration
	Integration in the workflow with CI
	Pipeline

	Lane Detection
	LIDAR-Based Lane Detection
	Preconditions
	Coordinate Transformation
	Boundary Detection and Lane Projection

	Camera-Based Lane Detection
	Classical Computer Vision Approach
	AI Enhanced Implementation
	Preconditions
	Bird's-eye View Transformation
	Lane Data Processing
	Advantages and Limitations

	Current Lane and Relative Position in Lane Calculation

	Object Detection
	LIDAR-Based Obstacle Detection
	Camera Based Object Detection
	Marker Systems
	ArUco Marker
	Environment Preparation
	Marker Detection
	Road Sign Detection
	Obstacle Tracking
	Obstacle History
	Determining Relative Velocities

	Path Planning
	Definitions and Context
	Implementation
	Planning the Path
	Example images

	Testing driving functions
	Testing Concept
	Preliminaries
	Approach used in the Group

	Testing with Real TurtleBots
	Approach 1: Fully Manual Testing
	Approach 2: Bird's Eye View Camera

	Testing in the simulation

	TurtleCar-Test
	Traffic Sequence Charts
	Architecture
	Trigger-System

	Timers
	State Machine
	Scenario
	Robot
	Obstacles
	Simulated Driver
	Gazebo integration

	Implementation of TurtleCar-Test
	Future expansions

	Architectural Concepts
	Autonomy Level Architecture
	Manual Driving and Partial Autonomy
	Autonomous Driving

	Model Predictive Control
	The Model Predictive Control Algorithm
	Implementation

	Situational Awareness
	Emergency Detector
	Lane Change Safety
	Strategy
	Implementation of the Obstacle Avoidance Strategy
	Testing

	Obstacle Overtaking Safety and Road Rules Adherence
	Introduction
	Implementation
	Scenarios

	Driving Functions
	Manual Driving
	Lane Keeping Assistant
	General Requirements
	Functional Requirements
	Non-Functional Requirements
	Additional Information
	Implementation
	Tests

	Adaptive Cruise Control
	General Requirements
	Functional Requirements
	Non-Functional Requirements
	Implementation
	Tests

	Lane Change Assistant
	General Requirements
	Functional Requirements
	Implementation
	Tests

	Obstacle Avoidance
	Requirements
	Implementation

	Overtaking
	Requirements
	Implementation
	Tests

	Platooning
	Constraints on Driving Function
	Classic Approach
	Model Predictive Control Approach

	Scenarios
	Main Scenario
	Rogue Actor
	Scenario 1: Unexpected Lane Change
	Scenario 2: Unexpected Braking

	Organization
	Milestones and Timeline
	Sprint-flow
	Sprint Workflow
	Defintion of Done
	Roles
	Tools

	Public Relations
	Quartierstag
	Website
	Dependencies
	Content Review Policy

	Email
	Instagram

	Outlook
	Driving Functions
	TurtleCar-Test
	TurtleCar-Core

	Conclusion

